<div dir="ltr"><div dir="ltr">Thanks a lot for the reply. The context is that the matrix itself will be used as a matrix projection in the context of multigrid algorithm. So the final matrix,P, will be used as the interpolation matrix in PCMG routine ( <a href="https://www.mcs.anl.gov/petsc/petsc-3.6/docs/manualpages/PC/PCMGSetInterpolation.html">https://www.mcs.anl.gov/petsc/petsc-3.6/docs/manualpages/PC/PCMGSetInterpolation.html</a> ), and then it will be used in matrix multiplication ( operation of the kind A'=PAP^T, A is a matrix on a fine MG level, A' the matrix on a coarser level, P is the final matrix that I want to build by blocks and P^T its transpose). <div><br></div><div>As I am using petsc4py, I will try the first option (that exists in petsc4py) and if it is not sufficient, I will look into <a href="https://petsc.org/main/docs/manualpages/Mat/MatCreateLocalRef/" target="_blank">https://petsc.org/main/docs/manualpages/Mat/MatCreateLocalRef/</a>.<div><br></div><div>Thanks a lot,</div><div><br></div><div>Emile</div></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Jul 21, 2022 at 2:03 PM Matthew Knepley <<a href="mailto:knepley@gmail.com">knepley@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="ltr">On Thu, Jul 21, 2022 at 6:28 AM Emile Soutter <<a href="mailto:emile.soutter@corintis.com" target="_blank">emile.soutter@corintis.com</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear all,<div><br></div><div>I am struggling with the simple following problem : Having a first matrix B1 of size n1xm1, a second matrix B2 of size n2 x m2, build a matrix M of size (n1+n2)x(m1+m2) where the blocks B1 and B2 are the "diagonal" of M (M[0:n1,0:m1]=B1, M[n1:(n1+n2),m1:(m1+m2)]=B2). In my case, the blocks B1 and B2 are obtained from another routine, directly in the petsc matrix form (or pyop2.Sparsity form). However the blocks are not squared (n1,n2,m1,m2 are all different integers). The operation is easy to do with the SetValues option. However, it takes a large amount of time (too much) when the system becomes large. I struggle to do it efficiently and in parallel. What method do you recommend to use to do this as fast as possible? </div><div><br></div><div>Thanks you for any tips,</div></div></blockquote><div><br></div><div>I think it depends on what you want to do with the final matrix. If you only want MatMult, then I think you can just use MatNest</div><div><br></div><div> <a href="https://petsc.org/main/docs/manualpages/Mat/MatCreateNest/" target="_blank">https://petsc.org/main/docs/manualpages/Mat/MatCreateNest/</a></div><div><br></div><div>which will wrap up the submatrices. However, if you want to manipulate the values (factorization, relaxation, etc) then you need</div><div>to assemble a monolithic matrix. For this you could create the global matrix, and then use</div><div><br></div><div> <a href="https://petsc.org/main/docs/manualpages/Mat/MatCreateLocalRef/" target="_blank">https://petsc.org/main/docs/manualpages/Mat/MatCreateLocalRef/</a></div><div><br></div><div>to get a submatrix to assemble directly into, which you pass to your assembly routine. Clearly this is more complicated, but</div><div>sometimes necessary.</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Emile </div><div></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>
</blockquote></div></div>