<div dir="ltr"><div dir="ltr">On Mon, Feb 28, 2022 at 6:54 PM Lucas Banting <<a href="mailto:bantingl@myumanitoba.ca">bantingl@myumanitoba.ca</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div dir="ltr">
<div style="font-family:Calibri,Arial,Helvetica,sans-serif;font-size:12pt;color:rgb(0,0,0)">
Hello,<br>
<br>
I have an MPIDENSE matrix of size about 200,000 x 200, using KSPLSQR on my machine a solution takes about 15 s. I typically run with six to eight processors.<br>
I have to solve the system several times, typically 4-30, and was looking for recommendations on reusable preconditioners to use with KSPLSQR to increase speed.<br>
<br>
Would it make the most sense to use PCCHOLESKY on the smaller system A^T * A?</div></div></blockquote><div><br></div><div>Yes. However, if you only have 200 columns, it might be even better to just use TSQR. There is an implementation of this</div><div>in SLEPc. I am Cc'ing Jose to see what would be the easiest way to call it for a least-squares solution.</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">
<div style="font-family:Calibri,Arial,Helvetica,sans-serif;font-size:12pt;color:rgb(0,0,0)">
Thanks,<br>
Lucas<br>
</div>
</div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>