<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class="">
One way to avoid the zero element in Jacobian is to exclude the boundary point from the solution vector. I often do this for Dirichlet boundary conditions since the value at the boundary is given directly and does not need to be taken as a degree of freedom.
<div class=""><br class="">
</div>
<div class="">Hong (Mr.) </div>
<div class="">
<div><br class="">
<blockquote type="cite" class="">
<div class="">On Oct 28, 2021, at 9:49 PM, 仓宇 <<a href="mailto:yhcy1993@gmail.com" class="">yhcy1993@gmail.com</a>> wrote:</div>
<br class="Apple-interchange-newline">
<div class="">
<div dir="ltr" class="">Thanks for your careful inspection and thoughtful suggestions.<br class="">
<br class="">
>    finite differencing may put a small non-zero value in that location due to numerical round-off<br class="">
<br class="">
I think your explanation is reasonable. This numerical round-off may somehow help to avoid this pivot issue.<br class="">
<br class="">
The structure of my jacobian matrix looks like this (generated by '-mat_view draw'):
<div class=""><span id="cid:ii_kvbn0pq30"><jac_view.png></span></div>
<div class="">Analytically, the first diagonal element of the jacobian is indeed 0, as its corresponding residual function is solely determined from boundary condition of another variable. This seems a little bit wired but is mathematically well-posed. For
 more description about the background physics, please refer to attached PDF file for more detailed explanation on the discretization and boundary conditions.</div>
<div class=""><br class="">
</div>
<div class="">Actually, the jacobian matrix is not singular, but I do believe this numerical difficulty is caused by the zero-element in diagonal. </div>
<div class="">In this regard, I've performed some trial and test. It seems that several methods have been worked out for this pivot issue:</div>
<div class="">a) By setting '-pc_type svd', PETSC does not panic any more with my hand-coded jacobian, and converged solution is obtained. Efficiency is also preserved.</div>
<div class="">b) By setting '-pc_type none', converged solution is also obtained, but it takes too many KSP iterations to converge per SNES step<span class="gmail-Apple-converted-space"> </span>(usually hundreds), making the overall solution procedure very
 slow.</div>
<div class=""><br class="">
</div>
<div class="">Do you think these methods really solved this kind of pivot issue? Not by chance like the numerical round-off in finite difference previously.</div>
<div class=""><br class="">
</div>
<div class="">Regards</div>
<div class=""><br class="">
</div>
<div class="">Yu Cang</div>
<div class=""><br class="">
Barry Smith <<a href="mailto:bsmith@petsc.dev" class="">bsmith@petsc.dev</a>> 于2021年10月27日周三 下午9:43写道:<br class="">
><br class="">
><br class="">
>    You can run with -ksp_error_if_not_converged to get it to stop as soon as a linear solve fails to help track down the exact breaking point.<br class="">
><br class="">
> > The problem under consideration contains an eigen-value to be solved,<br class="">
> > making the first diagonal element of the jacobian matrix being zero.<br class="">
> > From these outputs, it seems that the PC failed to factorize, which is<br class="">
> > caused by this 0 diagonal element.  But I'm wondering why it works<br class="">
> > with jacobian matrix generated by finite-difference?<br class="">
><br class="">
>    Presumably your "exact" Jacobian puts a zero on the diagonal while the finite differencing may put a small non-zero value in that location due to numerical round-off. In that case even if the factorization succeeds it may produce an inaccurate solution
 if the value on the diagonal is very small.<br class="">
><br class="">
>    If your matrix is singular or cannot be factored with LU then you need to use a different solver for the linear system that will be robust to the zero on the diagonal. What is the structure of your Jacobian? (The analytic form).<br class="">
><br class="">
>   Barry<br class="">
><br class="">
><br class="">
> > On Oct 27, 2021, at 1:47 AM, 仓宇 <<a href="mailto:yhcy1993@gmail.com" class="">yhcy1993@gmail.com</a>> wrote:<br class="">
> ><br class="">
> > Thanks for your kind reply.<br class="">
> ><br class="">
> > Several comparison tests have been performed. Attached are execution<br class="">
> > output files. Below are corresponding descriptions.<br class="">
> ><br class="">
> > good.txt -- Run without hand-coded jacobian, solution converged, with<br class="">
> > option '-ts_monitor -snes_monitor -snes_converged_reason<br class="">
> > -ksp_monitor_true_residual -ksp_converged_reason';<br class="">
> > jac1.txt -- Run with hand-coded jacobian, does not converge, with<br class="">
> > option '-ts_monitor -snes_monitor -snes_converged_reason<br class="">
> > -ksp_monitor_true_residual -ksp_converged_reason -snes_test_jacobian';<br class="">
> > jac2.txt -- Run with hand-coded jacobian, does not converge, with<br class="">
> > option '-ts_monitor -snes_monitor -snes_converged_reason<br class="">
> > -ksp_monitor_true_residual -ksp_converged_reason -snes_test_jacobian<br class="">
> > -ksp_view';<br class="">
> > jac3.txt -- Run with hand-coded jacobian, does not converge, with<br class="">
> > option '-ts_monitor -snes_monitor -snes_converged_reason<br class="">
> > -ksp_monitor_true_residual -ksp_converged_reason -snes_test_jacobian<br class="">
> > -ksp_view -ts_max_snes_failures -1 ';<br class="">
> ><br class="">
> > The problem under consideration contains an eigen-value to be solved,<br class="">
> > making the first diagonal element of the jacobian matrix being zero.<br class="">
> > From these outputs, it seems that the PC failed to factorize, which is<br class="">
> > caused by this 0 diagonal element.  But I'm wondering why it works<br class="">
> > with jacobian matrix generated by finite-difference? Would employing<br class="">
> > DMDA for discretization be helpful?<br class="">
> ><br class="">
> > Regards<br class="">
> ><br class="">
> > Yu Cang<br class="">
> ><br class="">
> > Barry Smith <<a href="mailto:bsmith@petsc.dev" class="">bsmith@petsc.dev</a>> 于2021年10月25日周一 下午10:50写道:<br class="">
> >><br class="">
> >><br class="">
> >>  It is definitely unexpected that -snes_test_jacobian verifies the Jacobian as matching but the solve process is completely different.<br class="">
> >><br class="">
> >>   Please run with -snes_monitor -snes_converged_reason -ksp_monitor_true_residual -ksp_converged_reason -snes_test_jacobian and send all the output<br class="">
> >><br class="">
> >>  Barry<br class="">
> >><br class="">
> >><br class="">
> >>> On Oct 25, 2021, at 9:53 AM, 仓宇 <<a href="mailto:yhcy1993@gmail.com" class="">yhcy1993@gmail.com</a>> wrote:<br class="">
> >>><br class="">
> >>> I'm using TS to solve a set of DAE, which originates from a<br class="">
> >>> one-dimensional problem. The grid points are uniformly distributed.<br class="">
> >>> For simplicity, the DMDA is not employed for discretization.<br class="">
> >>><br class="">
> >>> At first, only the residual function is prescribed through<br class="">
> >>> 'TSSetIFunction', and PETSC produces converged results. However, after<br class="">
> >>> providing hand-coded Jacobian through 'TSSetIJacobian', the internal<br class="">
> >>> SNES object fails (residual norm does not change), and TS reports<br class="">
> >>> 'DIVERGED_STEP_REJECTED'.<br class="">
> >>><br class="">
> >>> I have tried to add the option '-snes_test_jacobian' to see if the<br class="">
> >>> hand-coded jacobian is somewhere wrong, but it shows '||J -<br class="">
> >>> Jfd||_F/||J||_F = 1.07488e-10, ||J - Jfd||_F = 2.14458e-07',<br class="">
> >>> indicating that the hand-coded jacobian is correct.<br class="">
> >>><br class="">
> >>> Then, I added a monitor for the internal SNES object through<br class="">
> >>> 'SNESMonitorSet', in which the solution vector will be displayed at<br class="">
> >>> each iteration. It is interesting to find that, if the jacobian is not<br class="">
> >>> provided, meaning finite-difference is utilized for jacobian<br class="">
> >>> evaluation internally, the solution vector converges to steady<br class="">
> >>> solution and the SNES residual norm is reduced continuously. However,<br class="">
> >>> it turns out that, as long as the jacobian is provided, the solution<br class="">
> >>> vector will NEVER get changed! So the solution procedure stucked!<br class="">
> >>><br class="">
> >>> This is quite strange!  Hope to get some advice.<br class="">
> >>> PETSC version=3.14.6, program run in serial mode.<br class="">
> >>><br class="">
> >>> Regards<br class="">
> >>><br class="">
> >>> Yu Cang<br class="">
> >><br class="">
> > <jac3.txt><jac2.txt><jac1.txt><good.txt><br class="">
></div>
</div>
<span id="cid:f_kvbs184e1"><TFM.pdf></span></div>
</blockquote>
</div>
<br class="">
</div>
</body>
</html>