3 Simplification

3.1 Unsteady, Incompressible

In non-dimensional form, the continuity equation, spread rate equation and pressure eigenvalue equation for 1D incompressible counter-flow are formulated as follows

$$
\begin{array}{r}
\frac{d(\hat{\rho} \hat{u})}{d \hat{z}}+2 \hat{\rho} \hat{V}=0 \\
\hat{\rho} \frac{d \hat{V}}{d \hat{t}}+\hat{\rho} \hat{u} \frac{d \hat{V}}{d \hat{z}}+\hat{\rho} \hat{V}^{2}=-\hat{\Lambda}_{r}+\frac{1}{R e} \frac{d^{2} \hat{V}}{d \hat{z}^{2}} \\
\hat{\Lambda}_{r}=\text { const } \tag{13}
\end{array}
$$

where $\hat{z}=z / L \in[0,1] ; \hat{t}=U_{\text {in }} t / L ; \hat{\rho}=\rho / \rho_{\text {in }}=1$ in this incompressible case; $\hat{u}=u / U_{i n} ; \hat{V}=V L / U_{i n} ; \hat{\Lambda}_{r}=\Lambda_{r} L^{2} / \rho_{i n} U_{i n}^{2}$ and $R e=\rho_{i n} U_{i n} L / \mu$.

Boundary conditions are prescribed as follows

$$
\begin{equation*}
\hat{u}(0)=\hat{u}_{L}, \hat{u}(1)=\hat{u}_{R} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{V}(0)=\hat{V}(1)=0 \tag{15}
\end{equation*}
$$

These equations are expressed in DAE form, leading to the residual function defined as

$$
\begin{equation*}
F(t, Y, \dot{Y})=0 \tag{16}
\end{equation*}
$$

With N uniformly distributed grid points, the solution vector is arranged as

$$
\begin{equation*}
Y=\left\{\hat{\Lambda}_{r}, \hat{u}_{1}, \hat{V}_{1}, \ldots, \hat{u}_{i}, \hat{V}_{i}, \ldots, \hat{u}_{N}, \hat{V}_{N}\right\}^{T} \tag{17}
\end{equation*}
$$

and the corresponding residual vector is defined as

$$
\begin{equation*}
F=\left\{R_{\hat{\Lambda}_{r}}, R_{\hat{u}_{1}}, R_{\hat{V}_{1}}, \ldots, R_{\hat{u}_{i}}, R_{\hat{V}_{i}}, \ldots, R_{\hat{u}_{N}}, R_{\hat{V}_{N}}\right\}^{T} \tag{18}
\end{equation*}
$$

For discretization, the convective terms are simply handled by first-order upwind scheme, while diffusive terms are treated by second-order central scheme. By neglecting $\hat{\rho}$, which equals to 1 in this case, the residuals are discretized as

$$
\begin{equation*}
R_{\hat{u}_{i}}=\frac{\hat{u}_{i}-\hat{u}_{i-1}}{\Delta \hat{z}}+2\left(\frac{\hat{V}_{i}+\hat{V}_{i-1}}{2}\right), \quad(2 \leq i \leq N) \tag{19}
\end{equation*}
$$

and

$$
R_{\hat{V}_{i}}= \begin{cases}\dot{\hat{V}}_{i}+\hat{u}_{i} \frac{\hat{V}_{i}-\hat{V}_{i-1}}{\Delta \hat{z}}+\hat{V}_{i}^{2}+\hat{\Lambda}_{r}-\frac{1}{R e} \frac{\hat{V}_{i-1}-2 \hat{V}_{i}+\hat{V}_{i+1}}{\Delta \hat{z}^{2}}, & \hat{u}_{i}>0 \tag{20}\\ \dot{\hat{V}}_{i}+\hat{u}_{i} \frac{\hat{V}_{i+1}-\hat{V}_{i}}{\Delta \hat{z}}+\hat{V}_{i}^{2}+\hat{\Lambda}_{r}-\frac{1}{R e} \frac{\hat{V}_{i-1}-2 \hat{V}_{i}+\hat{V}_{i+1}}{\Delta \hat{z}^{2}}, & \hat{u}_{i}<0\end{cases}
$$

for $2 \leq i \leq N-1$.

Treatment of boundary conditions and the pressure eigenvalue equation deserves attention. Since the continuity equation is a first-order equation, only one boundary condition is required

$$
\begin{equation*}
R_{\hat{u}_{1}}=\hat{u}_{1}-\hat{u}_{L} . \tag{21}
\end{equation*}
$$

Notice that no boundary condition is prescribed for the pressure eigenvalue, $\hat{\Lambda}_{r}$ should be determined from other conditions so that its coupling and influence can be correctly embodied. This is accomplished by setting

$$
\begin{equation*}
R_{\hat{\Lambda}_{r}}=\hat{u}_{N}-\hat{u}_{R} . \tag{22}
\end{equation*}
$$

Since the spread rate equation is a spatially second-order equation, two boundary condition are required. The corresponding zero-value conditions are applied as

$$
\begin{gather*}
R_{\hat{V}_{1}}=\hat{V}_{1} \tag{23}\\
R_{\hat{V}_{N}}=\hat{V}_{N} \tag{24}
\end{gather*}
$$

In this way, the DAE is mathematically well-posed.
By default, the temporal derivative is handled by the backward-Euler scheme. The implicit solution procedure necessitates evaluation of the jacobian matrix, which is defined as

$$
\begin{equation*}
J=\frac{\partial F}{\partial Y} \tag{25}
\end{equation*}
$$

It obvious that the first diagonal element of J is analytically 0 .

