<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;
        mso-fareast-language:EN-US;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri",sans-serif;
        mso-fareast-language:EN-US;}
@page WordSection1
        {size:612.0pt 792.0pt;
        margin:70.85pt 2.0cm 2.0cm 2.0cm;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="IT" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span lang="EN-GB">Good morning,<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB">I want to solve the Poisson equation on a 3D domain with 2 non-connected sub-domains.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB">I am using FGMRES+GAMG and I have no problem if the two sub-domains see a Dirichlet boundary condition each.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB">On the same domain I would like to solve the Poisson equation imposing periodic boundary condition in one direction and homogenous Neumann boundary conditions in the other two directions. The two sub-domains are symmetric
 with respect to the separation between them and the operator discretization and the right hand side are symmetric as well. It would be nice to have the same solution in both the sub-domains.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB">Setting the null space to the constant, the solver converges to a solution having the same gradients in both sub-domains but different values.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB">Am I doing some wrong with the null space? I’m not setting a block matrix (one block for each sub-domain), should I?<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB">I tested the null space against the matrix using MatNullSpaceTest and the answer is true. Can I do something more to have a symmetric solution as outcome of the solver?<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB">Thank you in advance for any comments and hints.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB">Best regards,<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="mso-fareast-language:IT">Marco Cisternino
<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB"><o:p> </o:p></span></p>
</div>
</body>
</html>