<div dir="ltr"><div dir="ltr">On Sun, Nov 15, 2020 at 2:18 PM Rakesh Halder <<a href="mailto:rhalder@umich.edu">rhalder@umich.edu</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Hi all,</div><div><br></div><div>A program I'm writing involves calculating the SVD of a large, dense N by n matrix (N ~= 150,000, n ~=10,000). I've used the different SVD solvers available through SLEPc, including the cross product, lanczos, and method available through the LAPACK library. The cross product and lanczos methods take a very long time to compute the SVD (around 7-8 hours on one processor) while the solver using the LAPACK library runs out of memory. If I write this matrix to a file and solve the SVD using MATLAB or python (numPy) it takes around 10 minutes. I'm wondering if there's a much cheaper way to solve the SVD.</div></div></blockquote><div><br></div><div>This seems suspicious, since I know numpy just calls LAPACK, and I am fairly sure that Matlab does as well. Do the machines that you</div><div>are running on have different amounts of RAM?</div><div><br></div><div>  Thanks,</div><div><br></div><div>     Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Thanks,</div><div><br></div><div>Rakesh<br></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>