<div dir="ltr"><div dir="ltr">On Tue, Sep 8, 2020 at 12:43 PM Olivier Jamond <<a href="mailto:olivier.jamond@cea.fr">olivier.jamond@cea.fr</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
  
    
  
  <div>
    <p>Thanks for your answer, whereas being 'sad' to me! Do you have
      any idea how the structure FE code geared toward HPC deals with
      their Lagrange multipliers for their BCs?</p></div></blockquote><div>I don't use Lagrange multipliers for Dirichlet conditions, just direct modification of the approximation space.</div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div><p> Do they 'accept' that
      cost?</p></div></blockquote><div>If you have Lagrange multipliers, I think yes. </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div>
    <p>To my understanding, I didn't know the Sherman-Morrison formula,
      and I am not sure to see how it applies to my case... Could you
      please help me on that?</p></div></blockquote><div>SM is a formula for inverting a matrix + a rank-one addition. This looks like your case with the Lagrange multiplier fixing one degree of freedom.</div><div><br></div><div>  Thanks,</div><div><br></div><div>     Matt </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div>
    <p>Many thanks,<br>
      Olivier  <br>
    </p>
    <blockquote type="cite">
      <div dir="ltr">
        <div class="gmail_quote">
          <div><br>
          </div>
          <div>I am not sure you can get around this cost. In this case,
            it reduces to the well-known</div>
          <div>Sherman-Morrison formula (<a href="https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula" target="_blank">https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula</a>),</div>
          <div>which Woodbury generalized. It seems to have the same
            number of solves.</div>
          <div><br>
          </div>
          <div>  <br>
          </div>
        </div>
      </div>
    </blockquote>
  </div>

</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>