<div dir="ltr"><div><div dir="ltr"><div>Hi Hong, <br><br></div>Apologies for creating unnecessary confusion by continuing the old thread instead of creating a new one. <br><br></div><div>While I looked into converting the complex PDE formulation to a real valued formulation in the past hoping for better performance, my concern now is with TAO being incompatible with complex scalars. I would've preferred to keep the complex PDE formulation as is (given that I spent some time tuning it and it works well now) for cost function and gradient evaluation while using TAO for the outer optimization loop. <br><br></div><div>Using TAO has the obvious benefit of defining a multi objective cost function, parametrized as a fit to a series of measurements and a set of regularizers while not having to explicitly worry about differentiating the regularizer or have to think about implementing a good optimization scheme. But if it converting the complex formulation to a real formulation would mean a loss of well conditioned forward solve (and increase in solving time itself), I was wondering if it would be better to keep the complex PDE formulation and write an optimization loop in PETSc while defining the regularizer via a cost integrand.<br></div><br></div>Thank You, <br><div><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div style="font-size:12.8px">Sajid Ali | PhD Candidate<br></div><div style="font-size:12.8px">Applied Physics<br></div><div style="font-size:12.8px">Northwestern University</div><div style="font-size:12.8px"><a href="http://s-sajid-ali.github.io" target="_blank">s-sajid-ali.github.io</a></div></div></div></div></div></div></div></div></div>