<div dir="ltr">Good question. It does look like there is Q1:<div><br></div><div>src/dm/impls/da/da.c:- ctype - DMDA_Q1 and DMDA_Q0 are currently the only supported forms<br></div><div><br></div><div>And in looking at a cell centered example src/snes/examples/tutorials/ex20.c, it looks like only DMDA_Q1 works. I get an error when I set it to DMDA_Q0 (DMDA_Q1 is the default). This is puzzling, Q0 is natural in cell centered.</div><div><br></div><div>I am not familiar with DMDA and I don't understand why, from ex20, that you have an odd number of points on a cell centered grid and an even number for vertex centered (eg, ex14). I would think that it should be the opposite.</div><div><br></div><div>I'm puzzled,</div><div>Mark</div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Mar 23, 2020 at 8:32 PM Xiaodong Liu <<a href="mailto:xliu29@ncsu.edu" target="_blank">xliu29@ncsu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Hi, all, <div><br></div><div>I want to confirm one thing about the interpolation and restrict matrix for the cell-centered multigrid. </div><div><br></div><div>I am running ex32.c. The following is my understanding.</div><div><br></div><div>For cell-centered multigrid, only DMDA_Q0 can be set as the interpolation type.</div><div>For interpolation from the coarse mesh, the values for the 4 finer cells are set equal to that of coarse cell. Then the restriction matrix is the inverse of the interpolation one for Galerkin type. </div><div><br></div><div>If I want to use the bilinear interpolation, I need to code the subrotuine myself, right?</div><div><br></div><div>Please double check whether my understanding is right. </div><div><br></div><div>Thanks A LOT. <br clear="all"><div><div dir="ltr"><div dir="ltr"><div>Xiaodong Liu, PhD<br>X: Computational Physics Division<br>Los Alamos National Laboratory<br>P.O. Box 1663, <br>Los Alamos, NM 87544<br>505-709-0534<br></div></div></div></div></div></div>
</blockquote></div>