<div dir="ltr"><div dir="ltr">On Thu, Feb 6, 2020 at 7:37 PM Fande Kong <<a href="mailto:fdkong.jd@gmail.com">fdkong.jd@gmail.com</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Hi All,</div><div><br></div><div>MOOSE team, Alex and I are working on some variable scaling techniques to improve the condition number of the matrix of linear systems. The goal of variable scaling is to make the diagonal of matrix as close to unity as possible. After scaling (for certain example), the condition number of the linear system is actually reduced, but the GMRES iteration does not decrease at all. <br></div><div><br></div><div>From my understanding, the condition number is the worst estimation for GMRES convergence. That is, the GMRES iteration should not increases when the condition number decreases. This actually could example what we saw: the improved condition number does not necessary lead to a decrease in GMRES iteration. We try to understand this a bit more, and we guess that the number of eigenvalue clusters of the matrix of the linear system may/might be related to the convergence rate of GMRES. We plot eigenvalues of scaled system and unscaled system, and the clusters look different from each other, but the GMRRES iterations are the same.</div><div><br></div><div>Anyone know what is the right relationship between the condition number and GMRES iteration? How does the number of eigenvalue clusters affect GMRES iteration? How to count eigenvalue clusters? For example, how many eigenvalue clusters we have in the attach image respectively?</div><div><br></div><div>If you need more details, please let us know. Alex and I are happy to provide any details you are interested in.</div></div></blockquote><div><br></div><div>Hi Fande,</div><div><br></div><div>This is one of my favorite papers of all time:</div><div><br></div><div> <a href="https://epubs.siam.org/doi/abs/10.1137/S0895479894275030">https://epubs.siam.org/doi/abs/10.1137/S0895479894275030</a></div><div><br></div><div>It shows that the spectrum alone tells you nothing at all about GMRES convergence. You need other things, like symmetry (almost</div><div>everything is known) or normality (a little bit is known).</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Thanks,</div><div><br></div><div>Fande Kong,<br></div><div><br></div><div><br></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>