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We present DMNetwork, a high-level package included in the PETSc library for the simulation of mul-
tiphysics phenomena over large-scale networked systems. The library aims at applications that have net-
worked structures such as those in electrical, gas, and water distribution systems. DMNetwork provides
data and topology management, parallelization for multiphysics systems over a network, and hierarchical
and composable solvers to exploit the problem structure. DMNetwork eases the simulation development cy-
cle by providing the necessary infrastructure through simple abstractions to define and query the network
components. This paper presents the design of DMNetwork, illustrates its user interface, and demonstrates
its ability to solve multiphysics systems, such as an electric circuit, a network of power-grid and water
subnetworks, and transient hydraulic systems over large networks with more than 2 billion variables on
extreme-scale computers using up to 30,000 processors.
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1. INTRODUCTION
Modeling, simulation, and analysis of critical infrastructures—assets providing essen-
tial services that form the backbone of a nation’s health, security, and economy, in-
cluding power distribution systems, water or gas distribution, communication, and
transportation—are of paramount importance from several strategically important
perspectives, including maintaining sustainability, security, and resiliency and provid-
ing key insights for driving policy decisions. Because of their physical and topological
nature, infrastructure systems are usually represented mathematically as a network
with its elements (nodes, edges) obeying physical laws, for example, energy and matter
conservation laws. Furthermore, these systems are often composed of subcomponents
with different physics. For instance, in power networks, some power plants will have a
gas subsystem as well as a mechanical and an electrical one. Because of the difficulty
in performing multiphysics simulations, different network subsystems traditionally
have been simulated separately.

In this paper, we present a new library, DMNetwork, for modeling and simulation of
network partial differential equation (PDE)-based multiphysics on extreme-scale com-
puters. DMNetwork is seamlessly integrated into the Portable Extensible Toolkit for
Scientific computing (PETSc) [Balay et al. 2019], thus allowing the use of PETSc hier-
archical and composable solvers. Before DMNetwork, managing a network simulation
in PETSc was tedious and difficult because the users themselves needed to
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(1) maintain the parallel data structures for the network application, including par-
titioning and setting up needed parallel communication between network physics
components; and

(2) completely manage the mapping of their network data structure and physics mod-
els to a PETSc solver (e.g., ODE/DAE integrator) application programming inter-
face (API).

DMNetwork provides the underlying infrastructure for managing the network topol-
ogy and the physics components. It is designed to scale for large networks while fa-
cilitating easy and rapid development of applications. DMNetwork can interface with
other packages. EPANET, software for simulating water distribution piping systems
[Rossman 2000], is an example of the type of network simulation tool that could bene-
fit by incorporating PETSc DMNetwork to provide efficiency and scalability. 1

Most software packages for network analysis are developed for representing and
determining network structures as graphs [Hagberg et al. 2008]. Several tools for net-
work analysis of pure graphs are currently available [NetworKit Development Team
2017; NetworkX Development Team 2018; Leskovec and Sosič 2016] that provide sta-
tistical measures, for example centrality and minimum distance. However, they do
not pose physics systems modeled by PDEs on the network structure. Packages are
available that provide modeling physics to assist scientists and engineers in modeling
complex multiphysics networked problems (e.g., Simulink R© [Mathworks 2017], Mod-
elica [Association 2017], and LabView [Instruments 2017]), but the problems they can
solve are restricted by size. Tools to model and assess the interdependencies between
coupled systems are still in an early stage, particularly from a standpoint of high-
performance computing. PLASMO [Jalving et al. 2017] is a Julia-based package for
coupled optimization of electric and gas networks.

This paper is organized as follows. In Section 2 we introduce DMNetwork, including
its design, user interface, and our innovative developments. In Section 3 we present
how DMNetwork enables easy use of hierarchical composable solvers, including mul-
tilevel domain-decomposition preconditioners based on fieldsplittings [Brown et al.
2012] for multiphysics systems. In Section 4 we demonstrate simulations on hydraulic
transient networks with billions of variables on extreme-scale computers. Through-
out the paper, we present examples of the application of DMNetwork to the solution
of linear electrical circuits, nonlinear power flow, hydraulic networks, and the inter-
connection of power and hydraulic networks. In the last section we provide a short
conclusion and a brief look at future work.

2. DMNETWORK: DESIGN AND INTERFACE
The aim of this work is to provide a highly efficient and scalable general framework
for expressing network problems based on PDEs and couplings among them. In scien-
tific environments, different parts of complex networks are often modeled by different
teams who develop their own specific methods and procedures. Simulation of the over-
all network is done by using cosimulation, where the interactions between the models
are handled by passing data back and forth [HELICS Development Team 2017; Op-
Sim Development Team 2017]. The Functional Mock-up Interface (FMI) [FMI Stan-
dard Development team 2017] standard prescribes a set of cosimulation directives for
exchanging data between heterogeneous simulators.

Expressing problems of different natures in a common framework is useful for ex-
posing their structure and discovering new ways to exploit it. Often, coupled networks
have the form of partial differential-algebraic equations (PDAES) [Bartel and Günther

1See petsc/src/snes/examples/tutorials/network/water/water.c [Balay et al. 2019].
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2018], where the algebraic part arises from Kirchoff-like laws. For the coupling be-
tween subsystems, using tailored equations has been shown to lead to faster conver-
gence of the problem [Singer and Cucuringu 2010] .

DMNetwork is developed as a subclass of the DMPlex in PETSc. DMPlex handles
general unstructured meshes, the mathematical models on the meshes, and their con-
nection to the PETSc solvers [Lange et al. 2016]. DMNetwork is a subclass of DMPlex
that strips away all its mesh-specific items, simplifying it to management of vertices
and edges. The design of DMNetwork started from single-network applications (i.e., for
a single network only); then it grew to handle multiple coupled networks since many
applications require management of a network of networks and/or interactions be-
tween different networks. An example of such an application is understanding the in-
terdependencies between different infrastructures, such as the impacts of water short-
age on electrical power output or the effect of electrical power outages on natural gas
supply.

2.1. Basic Building Blocks in DMNetwork
DMNetwork uses three building blocks for managing the network topology and the
physics:

— Vertex
A vertex is a connection point in the topology graph connecting one or more edges.
From an application point of view, a vertex can be regarded as a physical connection
point, such as a power station, factory, or gas network delivery point.

— Edge
An edge represents a connection between two vertices. Edges represent connections
between physical assets in a given network, such as a transmission line connecting
two electrical substations or a gas/water pipeline.

— Component
A component represents the physics associated with a vertex or an edge. For in-
stance, a component for an edge can be a resistor, and a component for a vertex
can be water treatment plant. Components for a network associate the physics of
an application with the graph of the network defined by the vertices and edges. A
component for DMNetwork is represented by a flat (serialized) data structure that
describes the parameters required for describing the component physics. DMNet-
work supports having multiple components on any vertex or edge.

New vertices and edges can be easily inserted through the API, and the existing
ones can be removed or updated with minimum local changes. We use the term net-
work point to refer to either an edge or a vertex. A component can be retrieved and
manipulated by querying a network point.

2.2. Flow of DMNetwork Application and API Functions
The DMNetwork class contains topological information about the problem as well as
physical modeling data. To build an application using DMNetwork, the user needs to
carry out the following steps, as illustrated by Figure 1.

(1) Create network.
First we create a DMNetwork object.

1 DMNetworkCreate (MPI Comm comm,DM ∗network ) ;

In the current release of DMNetwork, we assume that the data files that contain
the network data are read on the root process. During the network distribution
stage, a new distributed network is created and the network data shipped off to
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Fig. 1. DMNetwork application steps.

an appropriate processor determined by the partitioner. Because the data is read
on a single process, the current implementation is obviously limited by the size of
the data set. Capability for parallel creation of DMNetwork is under active devel-
opment and will be released this year.

(2) Register components.
DMNetwork requires the user to register each associated physics component:

1 DMNetworkRegisterComponent (DM network , const char∗ name, s i z e t size , PetscInt ∗
key ) ;

Name is the user-selected name of the component, and size is the size in bytes
(obtained through sizeof() function) of the component data structure. On success-
ful registration of the component, a key is returned that is a unique identifier for
that component and can be used subsequently to add this particular component to
vertices or edges.
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(3) Set up network graph.
This step sets up the network topology through the following API functions.

1 DMNetworkSetSizes (DM network , PetscInt Nsubnet , PetscInt nv [ ] , PetscInt ne [ ] ,
PetscInt NsubnetCouple , PetscInt nce [ ] ) ;

Nsubnet and NsubnetCouple are the numbers of subnetworks and coupling sub-
networks, respectively. Users set the sizes of subnetworks through the arrays that
contain the number of local (to the given MPI process) vertices (nv[]), edges (ne[]),
and coupling edges (nce[]).

1 DMNetworkSetEdgeList (DM network , PetscInt ∗ edge l i s t [ ] , PetscInt ∗edgelistCouple
[ ] ) ;

Edgelist is an array of integer arrays (one for each subnetwork) describing the
vertex connectivity for each edge in that subnetwork. For example, a subnetwork
having 3 vertices and 2 edges, with edges connecting vertices 0-1 and 1-2, has
the edgelist {0,1,1,2}. EdgelistCouple is an array of integer arrays describing the
connected vertices between two subnetworks. For example, {0,4,1,0} represents a
coupling edge that connects vertex 4 of subnetwork 0 to vertex 0 of subnetwork 1.
After setting the network size and connectivity, the function

1 DMNetworkLayoutSetUp(DM network ) ;

needs to be called. It constructs the network graph, but no physics is yet associated
with the network at this stage.

(4) Add components and variables.
A component is added to a given vertex or edge with the following function.

1 DMNetworkAddComponent(DM network , PetscInt point , PetscInt key , void ∗comp) ;

The number of variables or degrees of freedom for a given edge or vertex is set by
the following function.

1 DMNetworkAddNumVariables (DM network , PetscInt point , PetscInt numvar) ;

Here, point is the network point (either an edge or a vertex), key is the key obtained
from DMNetworkRegisterComponent, and comp is a pointer to component data.
The range of points for vertices and edges can be obtained by the following query
functions.

1 DMNetworkGetVertexRange (DM network , PetscInt ∗vStart , PetscInt ∗vEnd) ;
2 DMNetworkGetEdgeRange (DM network , PetscInt ∗eStart , PetscInt ∗eEnd) ;

Here, vStart and vEnd are the starting and end+1 numbers for the vertices, while
eStart and eEnd are corresponding points for edges. The vertices and edges in
subnetwork sub can be queried by

1 DMNetworkGetSubnetworkInfo (DM network , PetscInt sub , PetscInt ∗nv , PetscInt ∗ne ,
const PetscInt ∗∗vtx , const PetscInt ∗∗edge ) ;

returning arrays for vertices (vtx) and edges (edge) in the subnetwork sub.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 S. ABHYANKAR et al.

Internal Design Note:
DMNetwork uses the following three array/objects to manage the component data (see
petsc/include/petsc/private/dmnetworkimpl.h [Balay et al. 2019]).
— header:

This field in the DMNetwork object is an array of structures of size nv+ne. Each
structure stores information about components at each network point. The stored
information is the size of the each component’s data structure, the key registered
for that component, and the offsets of that component’s data in the data section.

— DataSection:
DataSection is an object of type PetscSection (a PETSc object for managing integer
arrays) in the DMNetwork object that is used when distributing the component
data.

— cvalue:
This is a two-dimensional array of pointers of size nv × ne to hold the component
data. On adding a component to a point p, the cvalue array for the corresponding
point holds the reference for the component data structure.

When a component is added to a vertex or an edge, the header is updated with the size,
key, and offset; the DataSection adds a dof (equal to the size of the component data
structure) at the given pointer, and the cvalue array is updated to hold a reference to
the component data structure.
DMPlex orders edges first, followed by vertices. In the above 3-vertex, 2-edge example,
the two edges will have point numbers 0, 1 and the vertices 2, 3, 4. DMNetwork uses a
PetscSection called DofSection to manage the degrees of freedom. This section is later
used by DMPlex for creating local and global vectors. On calling DMNetworkAddNum-
Variables(), the number of variables for the given point in DofSection gets updated.

(5) Set up and distribute DMNetwork.
After adding the components and variables at vertices and edges,

1 DMSetUp(DM network ) ;

must be called. It sets up the DMNetwork internal data structures to be used with
the PETSc solvers.
Internal Design Note:
DMSetUp is responsible for performing the following operations:
— A contiguous array is allocated to hold the data for all the components added to the

network, and the components are copied over to this array. The component informa-
tion for each point has the header information first, followed by the component data.
This array is used for distributing the component data to the appropriate processors
when doing the partitioning.

— Setup of the DofSection, which holds the information on number of variables at each
network point.

A given network can be then partitioned and distributed to multiple processors to
approximately equalize the number of unknowns per process by calling the func-
tion

1 DMNetworkDistribute (DM dm, PetscInt overlap } ;

Here, overlap is the amount of edge overlap between partitions. DMNetwork has
been tested with nonoverlapping partitions (i.e., overlap=0). On distribution, each
process gets a part of the network that includes its local edges, vertices and ghost
vertices. DMNetwork uses graph-partitioning packages, such as ParMetis [Karypis
and Kumar 1997] or Chaco [Hendrickson and Leland 1995], to decide what edges
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and vertices are assigned to each process. The DMPlex code manages the move-
ment of the data to the appropriate processes from the root process where the data
was provided by the user code.

(6) Associate DMNetwork with the PETSc solvers.
With the above steps the user has created a distributed network object that con-
tains the following:
— A (partitioned) graph representation of the problem.
— Physical data in each vertex and edge, related to the model for that entity.
— A data structure containing ghost vertices and communication data structures.
Now, the user can associate this DMNetwork with a PETSc solver via

1 SolverSetDM ( PetscSolver Solver ,DM network ) ;

and retrieve it during function evaluation with
1 SolverGetDM ( PetscSolver Solver ,DM ∗network ) ;

Here Solver represents a PETSc solver, that is, KSP (linear solver), SNES (nonlinear
solver), or TS (time stepper).

2.3. Residual Function Evaluation
We use an example to illustrate how DMNetwork facilitates the evaluation of the resid-
ual function (or right-hand side vector for linear problems).

Example: Electric Circuit
We solve a toy linear electric circuit problem from [Strang 2007]. The topology of the

electrical circuit is shown in Fig. 2. The circuit obeys the Kirchhoff laws. Hence, in the
vertices of the graph, the energy is not accumulated:∑

j

i(j) = isource(k) , (1)

where i(j) is the current flowing though the branch (edge) j, incident to the node (ver-
tex) k. The isource(k) allows one to account for current sources at node k. The voltage
drop across the edge k, from v(i) to v(j), is defined by Ohm’s law plus any voltage source
v
(k)
source:

i(k)

r(k)
+ v(j) − v(i) = v

(k)
source . (2)

We use the superscript and subscript to distinguish between edge and vertex quanti-
ties, respectively. In this case i(∗) is an edge variable, and v(∗) is a vertex variable.

These equations can be represented with the KKT matrix and the graph Laplacian.
This structure is shared by many network flow problems, such as water networks:[

R−1 A
AT

] [
i
v

]
=

[
vsource
isource

]
. (3)

The practical implementation of this problem requires knowing the topology or con-
nectivity of the network (a list of vertices and a list of edges defined by vertex pairs)
and the physics (resistance, values of voltage source, and current source).

The following is a code fragment from petsc/src/ksp/ksp/examples/tutorials/net-
work/ex1.c [Balay et al. 2019]. In this code, we define two physics components, Node
and Branch

1 typedef struct {
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Fig. 2. Network diagram. Resistances are represented by zig-zag lines (R), voltage sources by parallel lines
(V ), and current sources by an arrow (I). The vertices of the graph are potentials, and the current flows
across the edges.

2 PetscInt id ; /∗ node id ∗ /
3 PetscScalar i n j ; /∗ current i n j e c t i o n (A) ∗ /
4 PetscBool gr ; /∗ boundary node ∗ /
5 } Node ;
6

7 typedef struct {
8 PetscInt id ; /∗ branch id ∗ /
9 PetscScalar r ; /∗ res istance (ohms) ∗ /

10 PetscScalar bat ; /∗ battery (V) ∗ /
11 } Branch ;

The subroutine below illustrates how to access DMNetwork information, iterate over
the graph structure, query network elements and associated physics components, and
then define entries of the matrix and right-hand side vector.

1 PetscErrorCode FormOperator (DM dmnetwork , Mat A, Vec b )
2 {
3 DMNetworkGetEdgeRange ( dmnetwork,&eStart ,&eEnd) ;
4 DMNetworkGetVertexRange ( dmnetwork,&vStart ,&vEnd) ;
5

6 VecGetArray ( b,&barr ) ;
7 f o r ( e = eStart ; e < eEnd ; e++) { /∗ loop over edges ∗ /
8 DMNetworkGetComponent ( dmnetwork , e ,0 ,NULL, ( void ∗∗ )&branch ) ;
9 DMNetworkGetVariableOffset ( dmnetwork , e,& l o f s t ) ;

10

11 DMNetworkGetConnectedNodes ( dmnetwork , e,&cone ) ;
12 DMNetworkGetVariableOffset ( dmnetwork , cone [0] ,& l o f s t f r ) ;
13 DMNetworkGetVariableOffset ( dmnetwork , cone [1] ,& l o f s t t o ) ;
14

15 /∗ set rhs b for Branch equation ( 2 ) ∗ /
16 barr [ l o f s t ] = branch−>bat ; /∗ battery value ∗ /
17

18 /∗ set Branch equation ( 2 ) ∗ /
19 row [ 0 ] = l o f s t ;
20 co l [ 0 ] = l o f s t ; val [ 0 ] = 1 . / branch−>r ;
21 co l [ 1 ] = l o f s t t o ; val [ 1 ] = 1 ;
22 co l [ 2 ] = l o f s t f r ; val [ 2 ] = −1;
23 MatSetValuesLocal (A,1 , row ,3 , col , val ,ADD VALUES) ;
24

25 /∗ set Node equation ( 1 ) ∗ /
26 /∗ from node ∗ /
27 DMNetworkGetComponent ( dmnetwork , cone [ 0 ] , 0 ,NULL, ( void ∗∗ )&node ) ;
28 i f ( ! node−>gr ) { /∗ not a boundary node ∗ /
29 row [ 0 ] = l o f s t f r ;
30 co l [ 0 ] = l o f s t ; val [ 0 ] = −1;
31 MatSetValuesLocal (A,1 , row ,1 , col , val ,ADD VALUES) ;
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32 }
33

34 /∗ to node ∗ /
35 DMNetworkGetComponent ( dmnetwork , cone [ 1 ] , 0 ,NULL, ( void ∗∗ )&node ) ;
36 i f ( ! node−>gr ) { /∗ not a boundary node ∗ /
37 row [ 0 ] = l o f s t t o ;
38 co l [ 0 ] = l o f s t ; val [ 0 ] = 1 ;
39 MatSetValuesLocal (A,1 , row ,1 , col , val ,ADD VALUES) ;
40 }
41 }
42

43 /∗ set rhs b for Node equation ( 1 ) ∗ /
44 f o r ( v = vStart ; v < vEnd ; v++) { /∗ loop over ver t i ces ∗ /
45 DMNetworkIsGhostVertex ( dmnetwork , v,&ghost ) ;
46 i f ( ! ghost ) {
47 DMNetworkGetComponent ( dmnetwork , v ,0 ,NULL, ( void ∗∗ )&node ) ;
48 DMNetworkGetVariableOffset ( dmnetwork , v,& l o f s t ) ;
49

50 i f ( node−>gr ) {
51 row [ 0 ] = l o f s t ;
52 co l [ 0 ] = l o f s t ; val [ 0 ] = 1 ;
53 MatSetValuesLocal (A,1 , row ,1 , col , val ,ADD VALUES) ;
54 } e lse {
55 barr [ l o f s t ] += node−>i n j ;
56 }
57 }
58 }
59 VecRestoreArray ( b,&barr ) ;
60 MatAssemblyBegin (A,MAT FINAL ASSEMBLY) ;
61 MatAssemblyEnd (A,MAT FINAL ASSEMBLY) ;

First we retrieve the ranges of edges and vertices (Lines 3–4). We experimented with
a higher-level iterator construct to loop over the entities but found that the simple
data structures provide higher performance and a simplicity of debugging. Of course
developers are free to layer an iterator abstraction of their liking directly on top of the
DMNetwork interface if they value the syntax it offers. We then iterate over the edges
(Line 7). For each edge we retrieve the component branch (that is, a pointer to the
application-specific data for this edge), the edge variable offset, and the offsets for the
variables in the boundary vertices (Lines 8–13). Next we write the Kirchhoff voltage
law (Lines 19–23); and then, for each boundary vertex, we check whether the vertex is
not a ghost value and write its contribution to the Kirchhoff current law (Lines 27–40).
We then iterate over each vertex and add the contribution of each current injection to
the corresponding equation (Lines 44–58).

2.4. Scalable Finite-Difference Jacobian Approximation with Coloring
In engineering fields, from which many of the network problems arise, the models often
have a complicated structure: they may include control logic and react in a discrete way
to transients in the network. Writing an analytic Jacobian matrix evaluation subrou-
tine is a time-consuming, error-prone, and often prohibitive task. When the user does
not provide a routine for analytic Jacobian evaluation, PETSc offers tools to calculate
a finite-difference approximation of the Jacobian matrix suitable for some classes of
problems. Note that for solving nonlinear problems, inexact Newton-like methods are
often used, in which outer Newton iterations determine the convergence criteria while
inner linear iterations ensure the asymptotic convergence of the method [Balay et al.
2019]. The inner solutions are approximations. Thus, when analytical Jacobian matri-
ces are not available, approximate Jacobian matrices, that is, finite-difference Jacobian
approximations, produce satisfying solutions for many applications.
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(a) Jacobian matrix generated by DM-
Plex. Number of colors used: 40.

(b) Jacobian matrix generated by DM-
Network. Number of colors used: 6.

Fig. 3. Comparison of Jacobian preallocation with DMPlex (a) and DMNetwork (b).

DMPlex and DMNetwork contain information about the connectivity of the vertices
and edges, which enables building a sparse Jacobian matrix structure and using ma-
trix coloring schemes [Coleman and Moré 1983] for finite-difference Jacobian approxi-
mation. For DMNetwork, we made two new developments:

(1) Because the ghost points occur only on the vertices and the edges do not directly
interact with each other, the columns associated with an edge do not share any row
element of other edges in the Jacobian matrix. Based on this information, we imple-
mented a new routine, which ensures that the number of colors of the Jacobian matrix
is independent of the total number of edges in the network and that the column indices
for the interior points of edges are not sent to the other computer processes. Our ex-
periments show that this new routine minimizes the number of colors and the amount
of interprocessor data communication for DMNetwork Jacobian computation.

(2) DMPlex creates the Jacobian matrix structure using the connectivity of the net-
work graph with dense blocks representing edges and vertices, which becomes memory
prohibitive when edges or vertices are built with components having large numbers of
variables (see Fig. 3(a)). We enable the user to input application-specific analytical
subblocks or sparse nonzero substructures to replace the default dense blocks at the
edge and vertex points.

1 DMNetworkEdgeSetMatrix ( dmnetwork , e , Juser ) ;
2 DMNetworkVertexSetMatrix ( dmnetwork , v , Juser ) ;

The finite-difference Jacobian approximation with customized coloring via DMNet-
work then involves the following steps:

(1) The user provides a subroutine for local function evaluation.
(2) The user provides Juser, the problem-specific sparse matrix nonzero structures at

the network point e or v; if Juser is not provided, dense matrix subblocks are used.
(3) DMNetwork builds the global sparse Jacobian matrix structure by assembling the

overall networks and application-specific sparse matrix blocks (when provided).
(4) The Jacobian matrix is computed by finite-difference approximation using the

newly developed matrix coloring scheme in an efficient and scalable fashion.

Example: A Small Water Pipe Network
The example petsc/src/ts/examples/tutorials/network/wash/pipes1.c simulates a

network of three water pipes (edges) connected linearly by four junctions (vertices).
Figures 3(a) and 3(b) show the nonzero structure of a finite-difference Jacobian matrix
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of size 44 × 44 using DMPlex and DMNetwork. DMPlex generates dense blocks for
edges and vertices, while DMNetwork employs user-provided block tridiagonal sub-
matrices for water pipes (edges) and tiny sparse blocks for junctions (edge-vertex cou-
plings). By taking advantages of network structure and application input, DMNetwork
computes the Jacobian matrix using much less storage and a significantly smaller
number of colors and interprocessor data communication.

3. HIERARCHICAL AND COMPOSABLE SOLVERS ON A NETWORK OF NETWORKS
The design of DMNetwork introduced in the preceding section decouples the user-
specific physics models from the library solvers and the parallel computer implemen-
tation. DMNetwork provides an abstraction that allows users to express their problem
concisely, hide cumbersome data management operations, and use flexible and efficient
PETSc solvers. By querying DMNetwork, users can retrieve a

— subnetwork, for example, an electric power-grid network or a hydraulic network;
— network point, that is, an edge or a vertex;
— component, for example, a water pipe, a power generator, or a power transmission

line; or
— coupling element, for example, a link between a power generator in the power-grid

network and a water pump in a hydraulic network.

Through the retrieved elements, users directly access their application data and trans-
parently apply their own operations, for example, function evaluations or Jacobian
matrix approximations.

A user-friendly API and robust execution are critical aspects of software libraries.
While the entire DMNetwork is distributed among multiple computer processors, our
current design of DMNetwork assigns an individual network point (an edge or a ver-
tex), together with its components, to a single process. Thus users actually write se-
quential code at these network points, for example, an algebraic equation at a voltage
point (Equation (1)) and a PDE system for a single water pipe (Equations (9 - 10)).
The PETSc library assembles these sequential network points into a parallel network
distributed over multiple computer processors. We may add support for parallel pro-
cessing single network points if the load imbalance becomes an issue.

On the library side, PETSc views DMNetwork as a single instance/object of its DM
class and applies its hierarchical composable solvers to the DMNetwork. For net-
worked system composition and decomposition, the following methods are particularly
useful.

(1) Domain decomposition [Smith and Tu 2013]:
Decomposition of a computational domain into smaller subdomains. Each subnet-
work is defined by a subregion of the entire region on which the original network
is defined, as illustrated in Fig. 4.

(2) Fieldsplit [Brown et al. 2012; Smith et al. 2012]:
Splitting of a multiphysics system into multiple single-physics subsystems. Fig. 5
shows a network composed of two subnetworks that represent distinct physics (for
example, electrical and water distribution).

(3) Hierarchical and composable solvers for network of networks:
Splitting a network into a hierarchy of global and local networks. These are then
associated with PETSc composable solvers.

We have further developed and customized these methods for applications that use
DMNetwork.

As illustrated by Fig. 1, we first construct a network or a composite network by cre-
ating a DMNetwork object. We then add a series of physical elements (for example,
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Fig. 4. Network partitioned into two subnetworks, with regard to its topology.

Fig. 5. Network composed of two subnetworks of distinct physics (represented by solid and dashed lines)
(for example, electrical and water distribution). Customized solvers can be applied to the individual subnet-
works.

water pipes, gas pipes, and power transmission lines) as the edges of the graphs and
we add pipe junctions, electrical generators, and load systems as the vertices of the
graph. From this information, DMNetwork, through the user-provided residual func-
tion evaluation, builds a mathematical model for the entire physical system. The model
is generally either a nonlinear algebraic equation or a differential algebraic equation
(DAE). The Jacobian operator of such a system often has the following structure:

N =


P1 . . . C1

P2 . . . C2

P3 . . . C3

...
...

...
. . .

...
D1 D2 D3 . . . J

 , (4)

where the submatrices Pi represent individual elements of the network: a water pipe
or a power transmission line, a water reservoir or an electrical generator. These ele-
ments can have dissimilar structures and time scales. For instance, in power systems
each vertex represents a mechanical generator that produces electrical energy, each
of which will have different parameters and even different equations. In water net-
works, the edges represent water conduits modeled with partial differential equations,
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whereas the vertices represent either simple boundary conditions of pressure and flow
or complex mechanical regulators such as valves or variable height reservoirs. Fur-
thermore, their physical meaning is independent of the network. The matrices J , Ci,
and Di contain information about boundary conditions of the individual system, such
as continuity or energy conservation; that is, they provide constraints for systems Pi.
They also provide information about the topological structure of the system (what is
connected to what). The PETSc FieldSplit preconditioner can take advantage of this
structure by employing customized preconditioners for a group of Pi’s that represent
the same physical components. Section 4.1.1 provides an example of how DMNetwork
eases the application of the FieldSplit preconditioner.

Domain decomposition can be considered under various contexts:

— computer-based;
— network-based; or
— physics-based.

PETSc domain decomposition preconditioners (for example, block Jacobi and the over-
lapping additive Schwarz method [Balay et al. 2019]) support computer-based domain
decomposition. These preconditioners distribute a computing domain, a network here,
to multiple computer processors for parallel execution.

If DMNetwork is created by more than one subnetwork, each representing a local
region of the entire network, then a network-based domain decomposition happens
naturally. Users can query an individual subnetwork for customized operation or ob-
servation.

DMNetwork is developed by targeting a network of networks with subneworks aris-
ing from different physics. DMNetwork is intended to enable field scientists to inde-
pendently develop their own model and write their physics-based function evaluations,
facilitate an integration of the field developments into a composite multiphysics model,
and then build the PETSc solvers on its top. PETSc solvers, such as KSP (linear),
SNES (nonlinear), and TS (time-stepper), can be split and composed at all levels of
the network and physics. Below, we provide a simple example to demonstrate these
capabilities.

Example: A Network of a Power-Grid Subnetwork and a Hydraulic Subnetwork 2

In this example, we build a network composed of two subnetworks: a power-grid
subnetwork obtained from [Zimmerman et al. 2011] (see Power Subnetwork in Fig. 6),
and a hydraulic subnetwork from EPANET (see Water Subnetwork in Fig. 6).

Two subnetworks are coupled by an edge linking a power load in the power-grid sub-
network to a water pipe junction in the hydraulic subnetwork. We treat the coupling
as a third subnetwork, as indicated by the dashed line in Fig. 6.

Let

X =

[
Xpower

Xwater

]
, F (X) =

[
Fpower(Xpower)
Fwater(Xwater)
Fcouple(X)

]
. (5)

The nonlinear mathematical system we wish to solve is

F (X) = 0. (6)

2See petsc/src/snes/examples/tutorials/network/ex1.c [Balay et al. 2019].
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We create three nonlinear solver objects: SNES, SNES power, and SNES water. SNES
solves the coupled Equation (6). SNES power solves[

Fpower(Xpower)
Xwater −Xwaterold

]
= 0 , (7)

and SNES water solves [
Fwater(Xwater)

Xpower −Xpowerold

]
= 0 , (8)

where Xpowerold and Xwaterold represent the initial guess or previous approximation of
Xpower and Xwater, respectively. Equations (7) and (8) are the power grid and hydraulic
subsystems using the global solution vector X, but they update only their own entries
represented by Xpower and Xwater.

Fig. 6. Network of subnetworks and the associated solvers in ex1.c.

Figure 6 shows the detailed layout of the networks, associated systems and the
solvers in the example. Below are its computational steps.

(1) Read data for the electric power grid, water pipe, and coupling subnetworks.
(2) Create a (single composite) DMNetwork:

— Register power, water, and coupling components in the DMNetwork;
— Add edge connectivity for all subnetworks;
— Set up the network layout;
— Retrieve subnetworks; add components and variables;
— Set up and then distribute the DMNetwork to multiple processes.

(3) Set up solvers:
— Create nonlinear solvers SNES, SNES power, and SNES water;
— Write subphysics function/Jacobian routines in the subdirectories: (a) power/pf-

functions.c (Func power()); (b) water/waterfunctions.c (Func water());
— Write the top-level function routine that calls Func power() and Func water().

(4) Solve:
while (it < it max and !converge)
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— k1 iterations of SNES power (update Xpower);
— k2 iterations of SNES water (update Xwater);
— k3 iterations of coupled composite system for X.

Running this code with run-time options, the users can experiment with domain de-
composition and solver composition/spliting at various levels of physics and computa-
tion without modifying ex1.c. For example, for the overall coupled system (6), we use
options

-coupled_snes_fd
-coupled_ksp_type gmres
-coupled_pc_type bjacobi
-coupled_sub_pc_type lu
-coupled_sub_pc_factor_mat_ordering_type qmd

That is, we use the finite-difference Jacobian approximation with the coloring scheme
introduced in Section 2.4 for the Newton iterations and GMRES Krylov iteration with
block Jacobi as preconditioner. Each block uses LU direct factorization with QMD ma-
trix ordering. For the power subsystem (7), we call the user-provided subroutine for
analytic Jacobian evaluation and use options

-power_pc_type asm
-power_sub_pc_type lu
-power_sub_pc_factor_mat_ordering_type qmd

for its inner-linear iterations, namely, the additive Schwarz method with subdomain
overlapping preconditioner [Abhyankar et al. 2011]. Similarly, various options can be
applied to the hydraulic subsystem (8).

4. HYDRAULIC TRANSIENT NETWORK SIMULATIONS ON EXTREME-SCALE COMPUTERS
Hydraulic transient network simulations are performed for problems such as water
distribution, oil distribution, and hydraulic generation. In this section, we demonstrate
the scalability of the DMNetwork through two hydraulic transient simulations with
millions to billions of variables on extreme-scale computers.

4.1. Water Pipe Network
We focus on the water transients on closed conduits such as an urban distribution sys-
tem. Simulation of hydraulic transients involves the calculation of pressure changes
induced by a sudden change of velocity of the fluid [Chaudhry 1979; Wylie and Streeter
1978]. These velocity changes create a pressure wave that propagates proportionally
to the speed of sound in the fluid media and the friction of the conduits. The modeling
of this problem involves the solution of a set of PDEs. The disturbance of the system
is introduced through a perturbation on the boundary conditions and results in a stiff
differential equation, traditionally solved by the method of characteristics.

To facilitate discussion, we introduce the following notation:

— nv, ne: number of junctions (vertices) and pipes (edges) of the network;
—Qk, Hk: water flow and pressure for pipe k;
—Qi, Hi: boundary values of water flow and pressure adjacent to junction i;
— nei: number of connected pipes at junction i.
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For pipe k, the water flow and pressure are described by the momentum and conti-
nuity equations:

∂Qk

∂t
+ gA

∂Hk

∂x
+RQk

∣∣Qk
∣∣ = 0 , (9)

gA
∂Hk

∂t
+ a2

∂Qk

∂x
= 0 , (10)

where g is the gravity constant, A is the area of the conduit, R = f
2DA with f being the

friction of the conduit and D its diameter, and a is the velocity of the pressure wave in
the conduit. At an interior junction i, nei > 1, the boundary conditions satisfy

nei∑
j=1

Q
kj

i = 0 , (11)

H
kj

i −H
k1
i = 0, j = 2 . . . nei . (12)

Equations (9)–(12) are built over a network or a network of subnetworks. Note that
the physical meaning of these equations corresponds to conservation of energy and
mass. Special boundaries such as the connection to a reservoir, valve, or pump provide
application-specific boundary conditions.

4.1.1. Steady State. Systems engineers customarily divide the simulation of a dynamic
system into two stages: steady state and transient state. Most systems are assumed
to operate in steady-state conditions until some disturbance perturbs the system. In
steady state the magnitudes do not vary with time. Thus Equations (9)–(10) are re-
duced to

gA
∂Hk

∂x
+RQk

∣∣Qk
∣∣ = 0 , (13)

∂Qk

∂x
= 0 . (14)

We can make two assertions for steady state: (1) along an individual pipe, the flow Qk

is constant, and (2) the drop of pressure Hk can be described with a linear function.
Hence values (Q, H) inside a pipe can be uniquely determined by their boundary val-
ues, which satisfy the interior junction equations (11)–(12) and special boundary con-
ditions. Equations (11) and (12) represent global connectivity of the network. Adding
special boundary conditions, they form an algebraic differential subsystem that we call
the junction subsystem. We name the rest of the system the pipe subsystem. The junc-
tion subsystem has an ill-conditioned Jacobian matrix in general; its size is determined
by the numbers of vertices, edges, and the network layout but is independent of the
level of refinement used within the pipes for the differential equations (13)–(14). Thus
it forms a small, but difficult to solve, subsystem requiring a strong preconditioner for
its solution.

The Newton-Krylov method [Kelley 2003] is used to solve the nonlinear steady-state
problem. For its linear iterations, we use the FieldSplit preconditioner to extract the
junction equations from the entire system, apply a direct linear solver (e.g., MUMPS
parallel LU solver [Amestoy et al. 2001]), and use block Jacobi with ILU(0) in each
subblock of the Jacobian for the rest of the system.

To use the FieldSplit preconditioner, we must provide the index set for the junctions.
DMNetwork facilitates an easy collection of the indices: iterate over the local vertices,
query Junction components, and retrieve variable offsets (see Section 2.3).

The command-line options for this execution are as follows.
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— Preconditioner for entire system:

-initsol_pc_type fieldsplit

— Preconditioner for junction subsystem:

-initsol_fieldsplit_junction_pc_type lu
-initsol_fieldsplit_junction_pc_factor_mat_solver_type mumps

— Preconditioner for pipe subsystem:

-initsol_fieldsplit_pipe_pc_type bjacobi
-initsol_fieldsplit_pipe_sub_pc_type ilu

The prefix initsol is used to distinguish the steady-state system from the transient
system, which is solved next.

4.1.2. Transient State. In the transient state we calculate the pressure wave that arises
after a perturbation is applied to the steady-state solution. We solve Equations (9)-
(12), which are a set of hyperbolic partial differential and algebraic equations. We
have simulated a case appearing in [Wylie and Streeter 1978, p. 38] to benchmark the
accuracy of our solution. The case consists of a single pipe connected to a reservoir
and a valve. At time t = 0+ the valve is closed instantaneously, creating a pressure
wave that propagates through the pipe back and forward. In Figure 7, we plot the
pressure profiles (hydraulic or piezometric head, in water column meters) for a set of
equally spaced points along the water pipe. In particular, the dark blue curve in the
figure represents the pressure at the water reservoir. The water reservoir is treated as
a constant pressure source, and hence the pressure is constant through time. At the
other extreme, in light blue, we can see the pressure wave next to the valve, which
sharply increases after its closure. The point right next to the valve (in yellow) will
not be perturbed until the pressure wave has reached it, at a time that is proportional
to the speed of the wave. This example provides physical intuition of the importance
of the Courant number in computing hyperbolic PDEs. Several methods to solve such
systems are described in the literature. In this section we describe two of the most
common ones.

(1) Method of characteristics
The method of characteristics [Chaudhry 2014] involves applying a change of vari-
ables to Equations (9)–(10). Taking (10), scaling it by a term λ, and adding it to (9),
we obtain

(
∂Qk

∂t
+ λa2

∂Qk

∂x
) + λgA(

∂Hk

∂t
+

1

λ

∂Hk

∂x
) +RQk

∣∣Qk
∣∣ = 0 . (15)

Using the chain rule, we obtain
dQ

dt
=
∂Q

∂t
+
∂Q

∂x

dx

dt
, (16)

and
dH

dt
=
∂H

∂t
+
∂H

∂x

dx

dt
. (17)

By defining
1

λ
=
dx

dt
= λa2 , (18)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 S. ABHYANKAR et al.

Fig. 7. Pressure wave on a conduit. This pressure wave is created in a single pipe with a conduit, when
the end of the conduit is instantaneously closed. The vertical axis measures the piezometric head in water
column meters, and each different color shows the pressure of a point in the pipe.

that is λ = ± 1
a , we obtain the ODEs in which the independent variable x has been

eliminated:
dQ

dt
± gA

a

dH

dt
+RQ |Q| = 0 . (19)

We use the characteristic equations at the boundaries.
(2) Lax scheme

An alternative to the method of characteristics is the Lax scheme [Chaudhry 2014],
an explicit first-order scheme. We approximate the partial derivatives as

∂H

∂t
=
Hj+1

i − H̄i

∆t
,

∂Q

∂t
=
Qj+1

i − Q̄i

∆t
, (20)

∂H

∂x
=
Hj

i+1 −H
j
i−1

2∆x
,

∂Q

∂x
=
Qj

i+1 −Q
j
i−1

2∆x
, (21)

H̄i = 0.5(Hj
i−1 +Hj

i+1), Q̄i = 0.5(Qj
i−1 +Qj

i+1) . (22)

We apply these equations to the interior points.

4.1.3. Experimental Results. We conducted experiments on two computer systems: Ce-
tus, an IBM Blue Gene/Q supercomputer in the Argonne Leadership Computing Facil-
ity [ALCF 2018a], and Edison, a Cray XC30 system in the National Energy Research
Scientific Computing Center [NERSC 2017]. Cetus has 4,096 nodes, each with 16 1600
MHz PowerPC A2 cores with 16 GB RAM per node, resulting in a total of 65,536 cores.
Edison has 5,576 compute nodes. A node has 64 GB of memory and two sockets, each
with a 12-core Intel processor at 2.4 GHz, giving a total of 133,824 cores.

Our test network was obtained from [de Corte and Sörensen 2014] in EPANET for-
mat [Rossman 2000]. It consists of 926 vertices and 1,109 edges of various lengths (see
Fig. 8). Equations (9)–(12) were discretized via the finite volume method into a sys-
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Fig. 8. Water network provided by [de Corte and Sörensen 2014].

tem over this single network with a total of 3,949,792 variables. We call the resulting
DMNetwork sub-dmnetwork.

In Table I we compare the performance and strong scalability of the LU and
FieldSplit preconditioners for solving the steady-state system (13)–(14) on this sub-
dmnetwork. Its result will be used to construct an initial solution for the transient-
state system. As discussed in Section 4.1.1, most execution time is spent in the LU
factorization. Hence, when we use FieldSplit employing LU for the small junction sub-
domain and block Jacobi on the larger pipe subdomain, computation time is greatly
reduced.

Table I. Execution Time of Steady State
on Edison (sec)

No. of Cores LU FieldSplit
24 52.0 3.91
48 45.9 3.84
72 42.3 2.92

The steady-state solution was compared with the EPANET software by using a
benchmark case from [de Corte and Sörensen 2014] consisting of 74 junctions, 102
pipes, and one reservoir. The solution of the problem was consistent with EPANET’s
solution, minding the differences in the approach.

We then built a large network by duplicating sub-dmnetworks and composing them
into a composite dmnetwork. Artificial edges were added between the sub-dmnetworks
without introducing new variables over these edges. To perform weak-scaling3 studies
of the simulation when the number of sub-dmnetworks was doubled, we increased the
number of processor cores proportionally.

The current implementation of DMNetwork reads the user input data file and sets
up the initial DMNetwork data structure on processor zero (see Sec. 2.2); then the

3See https://en.wikipedia.org/wiki/Scalability#Weak versus strong scaling.
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structure is distributed to the multiple processes for building a parallel DMNetwork,
which is used for the simulation.

DMNetwork setup and the initial steady-state solution computation (13)–(14) occur
only once. The focus of our simulation is the repeated time integration of the transient-
state system. All the experiments were done by using the PETSc DAE solver, that
is, the Lax scheme for each pipe and backward Euler time integration for the entire
composite network system (9)–(12). The Jacobian matrix was approximated by finite
differencing with coloring, as discussed in Section 2.4, and the Krylov GMRES itera-
tions with selected preconditioner were implemented for the linear solves. Since the
Jacobian matrix structure does not change with the time, the computing time spent
at each time step remains approximately constant. We run only 10 time steps for each
test case.

Tables II and III show the scalability of the simulation on Cetus and Edison. The
linear solvers dominate the computation with efficiency determined by the selected
preconditioners. Among all the preconditioners provided by PETSc, we found the block
Jacobi and the additive Schwarz method (ASM) with subdomain overlapping 1 (ov.1)
and 2 (ov.2) to be the most efficient for our application. In the tables, we compare these
three preconditioners using the total simulation time and cumulative number of linear
iterations (given in parentheses).

Table II. Execution Time of Transient State on Cetus (sec)

No. of Variables Linear Preconditioner
Cores (in millions) Block Jacobi ASM ASM

ov. 1 ov. 2
256 16 60.0 (43) 50.5 (24) 45.3 (20)

1,024 63 63.4 (49) 50.6 (24) 45.4 (20)
4,096 253 86.1 (54) 72.8 (34) 58.7 (20)

16,384* 1,012 94.1 (54) 81.2 (34) 65.3 (20)

* We set the number of cores per node to 8 (instead of 16) to double the
memory available per core.

Table III. Execution Time of Transient State on Edison (sec)

No. of Variables Maximum Variables Linear Preconditioner
Cores per Core Block Jacobi ASM ASM

(in millions) (in thousands) ov. 1 ov. 2
240 16 106 9.9 (48) 7.3 (25) 6.4 (20)
960 63 106 10.6 (55) 7.0 (24) 6.2 (20)

3,840 253 106 10.4 (53) 7.3 (24) 6.7 (20)
15,360 1,012 104 11.9 (53) 11.4 (26) 9.9 (20)
30,720 2,023 117 20.0 (53) 17.6 (26) 17.2 (20)

The water pipe network has pipes of various lengths that give rise to pipes with
varying degrees of freedom. Since each pipe is restricted to a single process, some job
imbalance results. As the number of cores increases, the job imbalance worsens, as
indicated by the maximum number of variables per core in column 3 of Table III. This
imbalance affects the scaling with increased number of cores.

To investigate this, we then doubled the number of sub-dmnetworks for each test and
listed the results in Table IV. As the work pool increases for each core, the job balance
as well as the scalability improve.
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Table IV. Execution Time of Transient State on Edison (sec)

No. of Variables Maximum Variables Linear Preconditioner
Cores per Core Block Jacobi ASM ASM

(in millions) (in thousands) ov. 1 ov. 2
240 32 151 14.1 (40) 11.8 (24) 10.4 (20)
960 126 152 14.5 (47) 11.1 (24) 10.1 (20)

3,840 506 157 16.2 (50) 12.1 (24) 11.2 (20)
15,360 2,023 162 18.7 (50) 15.7 (24) 16.9 (20)

Table V. Execution Time of Residual and Jacobian Evaluation on Edison (sec)

No. of Variables Residual Function Jacobian Matrix
Cores (in millions)

240 16 0.9 (7 %) 0.9 (9%)
960 63 0.9 (6 %) 1.0 (9 %)

3,840 253 0.9 (7 %) 1.0 (9 %)
15,360 1,012 1.4 (6 %) 1.5 (12 %)
30,720 2,023 2.8 (5 %) 3.1 (14 %)

Table V shows the weak scalability of the residual function evaluation and Jacobian
evaluation using the matrix-coloring scheme developed for DMNetwork as described
in Section 2.4. The data is taken from the cases using the block Jacobi preconditioner.
Other cases give similar scalabilities. Along with the total execution time spent on
these evaluations, we list their percentage of total time in the transient-state simula-
tion.

Because of the initial sequential setup of DMNetwork, the size of applications with
which we can experiment is limited by the local memory of the computer systems.
Cetus has 1 GB or 2 GB of memory per core when 16 cores or 8 cores are used per node,
respectively; and Edison has 2.67 GB of memory per core. The largest problems we are
able to run on these machines are approximately 1 billion variables using 16,384 cores
on Cetus and 2 billion variables using 30,720 cores on Edison, respectively. Parallel
DMNetwork is under active development and will be released this year.

The results demonstrate that, using DMNetwork, we can achieve weak scalability
for the simulation with 2 billion variables using up to 30,000 cores. Overall, for most
test cases, ASM, with an overlap of 2, is the fastest with the fewest number of linear
iterations.

4.2. Mississippi River Network
Applying DMNetwork to a real application network is our ongoing project. This section
reports preliminary results in simulating the Mississippi river network.

We start with the shallow water equations, which consist of conservation of mass
equation (23) and momentum equation (24). The equations describe the flow behavior
in open channels, such as river, canal, and pipe networks [Abbott and Basco 1989;
Te Chow 1959; Guinot 2012]. The assumptions for the equations include that the water
is incompressible, transverse and vertical accelerations are negligible, the flow regime
is turbulent, and the change in bed slope is very small. A single river is modeled as

∂H

∂t
+
∂(HU)

∂x
= 0 , (23)

∂(HU)

∂t
+
∂(HU2 + 1

2gH
2)

∂x
= gH(Sb − Sf ) , (24)
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where H is flow depth, U is flow velocity, g is the gravity constant, Sb is the bed slope,
and Sf is the bed friction. Let Q = HU , Equations (11)-(12) are used to model the
junctions of the rivers in the network.

Fig. 9. Mississippi river network.

DMNetwork is applied to simulate river flow in the Mississippi river [Betrie et al.
2018], which is the largest river in North America. The Mississippi river system con-
sists of one-eighth of the total river segements in the conterminous United States
[Kammerer 1987]. The data for the river network and the physical properties for each
river segement (e.g., length, width, slope, flow depth and velocity) are obtained from
the NHDPlus dataset [McKay et al. 2012].

Figure 9 depicts the Mississippi river network modeled with 263,531 edges and
256,437 vertices. A finite volume method is used to discretize Equations (23)-(24) with
a total of 28,894,804 variables for the network.

Numerical simulation is conducted on the Theta supercomputer at Argonne Leader-
ship Computing Facility [ALCF 2018b]. The strong-scaling4 result depicted in the Fig.
10 shows that successive doubling the number of processor cores (from 64 to 128, 256,
and 512) decreases the computation time by approximately half each time. We note

4See https://en.wikipedia.org/wiki/Scalability#Weak versus strong scaling.
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Fig. 10. Strong-scaling result of the Mississippi river network simulation.

that the scaling result from this study is satisfactory compared with the Routing Ap-
plication for Parallel Computation of Discharge model [David et al. 2011] that scales
up to 16 cores for the simulation of the upper Mississippi river.

5. CONCLUSIONS AND FUTURE WORK
This paper introduces DMNetwork, a new package in PETSc for the simulation of
large networked PDE-based multiphysics applications. DMNetwork enables scientists
to build physics models independently, assemble their models into an overall system,
and then apply PETSc hierarchical and composable solvers to it on extreme-scale com-
puters.

The design and interfaces of DMNetwork enable users to switch between various
solvers with minimal effort and offer an effective test base for network-structured ap-
plications. DMNetwork greatly simplifies programming parallel code to solve poten-
tially complicated network multiphysics problems.

Early users of DMNetwork reported satisfactory results for power flow simulations
[Werner et al. 2019; Rinaldo and Ceresoli 2018]. Applications presented in this pa-
per include an electric circuit, a network of a power-grid subnetwork and a hydraulic
subnetwork, the Mississippi river network, and a composite water pipe network.

Numerical experiments for the large-scale water pipe network show the robustness
and the scalability of the PETSc solvers with DMNetwork on computers using up to
30,000 processor cores.

Our future work will include parallel creation of DMNetwork, coupling of distinct
physics, and multiscale-time-step integration over extremely large networks.
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Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA). 11–15.

HELICS Development Team. 2017. HELICS web page. (2017). https://github.com/GMLC-TDC/HELICS-src
Bruce Hendrickson and Robert Leland. 1995. A multilevel algorithm for partitioning graphs. In Supercom-

puting ’95: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing (CDROM). ACM Press,
New York, 28. DOI:http://dx.doi.org/10.1145/224170.224228

National Instruments. 2017. LabVIEW web page. (2017). http://www.ni.com/labview/.
Jordan Jalving, Shrirang Abhyankar, Kibaek Kim, Mark Herald, and Victor Zavala. 2017. A graph-based

computational framework for simulation and optimization of coupled infrastructure networks. IET Gen-
eration, Transmission, and Distribution 11, 12 (2017), 3163–3176.

John C Kammerer. 1987. Largest rivers in the United States (water fact sheet). Technical Report. U.S. Geo-
logical Survey,.

George Karypis and V. Kumar. 1997. ParMETIS: Parallel graph partitioning and sparse matrix order-
ing library. Technical Report 97-060. Department of Computer Science, University of Minnesota.
http://www.cs.umn.edu/ metis.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



PETSc DMNetwork: A Library for Scalable Network PDE-Based Multiphysics Simulations A:25

Carl T. Kelley. 2003. Solving nonlinear equations with Newton’s method. SIAM.
Michael Lange, Lawrence Mitchell, Matthew G. Knepley, and Gerard J. Gorman. 2016. Efficient mesh man-

agement in Firedrake using PETSc-DMPlex. SIAM Journal on Scientific Computing 38, 5 (2016), S143–
S155. http://epubs.siam.org/doi/abs/10.1137/15M1026092
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