<div>Thank you, Matthew! I'll give it a try.</div><div> </div><div>29.10.2019, 13:30, "Matthew Knepley" <knepley@gmail.com>:</div><blockquote><div><div>On Tue, Oct 29, 2019 at 5:06 AM Dave May via petsc-users <<a href="mailto:petsc-users@mcs.anl.gov">petsc-users@mcs.anl.gov</a>> wrote:</div><div><blockquote style="border-left-color:rgb( 204 , 204 , 204 );border-left-style:solid;border-left-width:1px;margin:0px 0px 0px 0.8ex;padding-left:1ex"><div><div> </div> <div><div>On Tue, 29 Oct 2019 at 08:59, <<a href="mailto:av-baron@yandex.ru">av-baron@yandex.ru</a>> wrote:</div><blockquote style="border-left-color:rgb( 204 , 204 , 204 );border-left-style:solid;border-left-width:1px;margin:0px 0px 0px 0.8ex;padding-left:1ex"><div>Hi, Dave! Thank you for your assistance. The problem is that I don't have the matrix representation for my problem.</div></blockquote><div> </div><div>You will have to explain in more detail if you want further help.</div><div>Explain what "I don't have the matrix representation for my problem" means.</div><div>If you don't have a matrix representation, how do you solve the forward problem??</div><div> </div><div>Maybe you mean you use a matrix-free (MF) method. That is still a matrix representation of your problem, however the MF representation does not explicitly store the matrix a_{ij} entries in a CSR (or other) format.</div></div></div></blockquote><div> </div><div>You could start by using SNES ex62. It is a 3D Stokes problem with Dirichlet conditions. Adding SLEPc is easy</div><div>(I have done it myself but not yet contributed back to SLEPc). After everything works, you can substitute in your</div><div>own problem.</div><div> </div><div>  Thanks,</div><div> </div><div>    Matt</div><div> </div><blockquote style="border-left-color:rgb( 204 , 204 , 204 );border-left-style:solid;border-left-width:1px;margin:0px 0px 0px 0.8ex;padding-left:1ex"><div><div><blockquote style="border-left-color:rgb( 204 , 204 , 204 );border-left-style:solid;border-left-width:1px;margin:0px 0px 0px 0.8ex;padding-left:1ex"><div> I've searched <span style="background:#ffffff none 0% 0% repeat scroll;float:none;font:14px 'arial' , sans-serif;text-align:left;text-decoration-style:initial;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px"><font color="#545454">on the internet </font></span><span style="background:#ffffff none 0% 0% repeat scroll;color:#545454;float:none;font:400 14px 'arial' , sans-serif;text-align:left;text-decoration-style:initial;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">for a solution, but</span> found only some examples of solving 2D eigenvalue problems for the Stokes equations. Maybe you could help me with the matrix representation for the 3D Stokes eigenvalue problem?</div><div>Thank you in advance,</div><div>Alex</div><div> </div><div>29.10.2019, 11:16, "Dave May" <<a href="mailto:dave.mayhem23@gmail.com">dave.mayhem23@gmail.com</a>>:</div><blockquote><div> </div><div> <div><div>On Tue 29. Oct 2019 at 08:13, alex via petsc-users <<a href="mailto:petsc-users@mcs.anl.gov">petsc-users@mcs.anl.gov</a>> wrote:</div><blockquote style="border-left-color:rgb( 204 , 204 , 204 );border-left-style:solid;border-left-width:1px;margin:0px 0px 0px 0.8ex;padding-left:1ex"><div><div>Hello!</div><div>In my project I have to calculate eigenvalues for the three dimensional Stokes equations with Dirichlet boundary conditions. I would like to use SLEPc iterative solver for this purpose, but I'm not quite sure how I should set up the matrices for the solver. I would be grateful if anyone could share a source code for solving this eigenvalue problem.</div></div></blockquote><div> </div><div>I presume your forward model uses petsc. What matrix representation do you use in that code? Why cannot they be used directly with slepc?</div><div> </div><div>Thanks</div><div>Dave</div><div> </div><div> </div><blockquote style="border-left-color:rgb( 204 , 204 , 204 );border-left-style:solid;border-left-width:1px;margin:0px 0px 0px 0.8ex;padding-left:1ex"><div><div> </div><div>Thank you very much! </div></div><div><div>Alex</div></div></blockquote></div></div></blockquote></blockquote></div></div></blockquote></div> <div> </div>--<div><div><div><div><div><div><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br />-- Norbert Wiener</div><div> </div><div><a href="http://www.cse.buffalo.edu/~knepley/">https://www.cse.buffalo.edu/~knepley/</a></div></div></div></div></div></div></div></div></blockquote>