<div dir="ltr"><div dir="ltr">On Tue, Sep 24, 2019 at 11:17 AM Yingjie Wu via petsc-users <<a href="mailto:petsc-users@mcs.anl.gov">petsc-users@mcs.anl.gov</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Respected Petsc developers <div>Hi, </div><div>I am currently using SNES to solve some non-linear PDEs. The model is a two-dimensional X-Y geometry. Because the magnitude of different physical variables is too large, it is difficult to find the direction in Krylov subspace, and the residual descends very slowly or even does not converge. I think my PDEs need scaling. I need some help to solve the following quentions. </div><div><br></div><div>1. I use - snes_mf_operator, so instead of providing Jacobian matrix, I only set up an approximate Jacobian matrix for precondition. For my model, do I just need to magnify the residuals to the same level? Is there any need to modify the precondition matrix? </div><div>2. I have seen some articles referring to the non-dimensional method. I don't know how to implement this method in the program and how difficult it is to implement.</div></div></blockquote><div><br></div><div>That answer to 1 and 2 is the same. Nondimensionalize your system, and in the the process scale your unknowns so that</div><div>they are about the same magnitude. Here is a great article on this process</div><div><br></div><div> <a href="https://epubs.siam.org/doi/pdf/10.1137/16M1107127">https://epubs.siam.org/doi/pdf/10.1137/16M1107127</a></div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Thanks,</div><div>Yingjie</div><div><br></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>