/* This file implements GMRES (a Generalized Minimal Residual) method. Reference: Saad and Schultz, 1986. Some comments on left vs. right preconditioning, and restarts. Left and right preconditioning. If right preconditioning is chosen, then the problem being solved by gmres is actually My = AB^-1 y = f so the initial residual is r = f - Mx Note that B^-1 y = x or y = B x, and if x is non-zero, the initial residual is r = f - A x The final solution is then x = B^-1 y If left preconditioning is chosen, then the problem being solved is My = B^-1 A x = B^-1 f, and the initial residual is r = B^-1(f - Ax) Restarts: Restarts are basically solves with x0 not equal to zero. Note that we can eliminate an extra application of B^-1 between restarts as long as we don't require that the solution at the end of an unsuccessful gmres iteration always be the solution x. */ #include <../src/ksp/ksp/impls/gmres/gmresimpl.h> /*I "petscksp.h" I*/ #include // DRL #define GMRES_DELTA_DIRECTIONS 10 #define GMRES_DEFAULT_MAXK 30 static PetscErrorCode KSPGMRESUpdateHessenberg(KSP,PetscInt,PetscBool,PetscReal*); static PetscErrorCode KSPGMRESBuildSoln(PetscScalar*,Vec,Vec,KSP,PetscInt); PetscErrorCode KSPSetUp_GMRES(KSP ksp) { PetscInt hh,hes,rs,cc; PetscErrorCode ierr; PetscInt max_k,k; KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscFunctionBegin; max_k = gmres->max_k; /* restart size */ hh = (max_k + 2) * (max_k + 1); hes = (max_k + 1) * (max_k + 1); rs = (max_k + 2); cc = (max_k + 1); ierr = PetscCalloc5(hh,&gmres->hh_origin,hes,&gmres->hes_origin,rs,&gmres->rs_origin,cc,&gmres->cc_origin,cc,&gmres->ss_origin);CHKERRQ(ierr); ierr = PetscLogObjectMemory((PetscObject)ksp,(hh + hes + rs + 2*cc)*sizeof(PetscScalar));CHKERRQ(ierr); if (ksp->calc_sings) { /* Allocate workspace to hold Hessenberg matrix needed by lapack */ ierr = PetscMalloc1((max_k + 3)*(max_k + 9),&gmres->Rsvd);CHKERRQ(ierr); ierr = PetscLogObjectMemory((PetscObject)ksp,(max_k + 3)*(max_k + 9)*sizeof(PetscScalar));CHKERRQ(ierr); ierr = PetscMalloc1(6*(max_k+2),&gmres->Dsvd);CHKERRQ(ierr); ierr = PetscLogObjectMemory((PetscObject)ksp,6*(max_k+2)*sizeof(PetscReal));CHKERRQ(ierr); } /* Allocate array to hold pointers to user vectors. Note that we need 4 + max_k + 1 (since we need it+1 vectors, and it <= max_k) */ gmres->vecs_allocated = VEC_OFFSET + 2 + max_k + gmres->nextra_vecs; ierr = PetscMalloc1(gmres->vecs_allocated,&gmres->vecs);CHKERRQ(ierr); ierr = PetscMalloc1(VEC_OFFSET+2+max_k,&gmres->user_work);CHKERRQ(ierr); ierr = PetscMalloc1(VEC_OFFSET+2+max_k,&gmres->mwork_alloc);CHKERRQ(ierr); ierr = PetscLogObjectMemory((PetscObject)ksp,(VEC_OFFSET+2+max_k)*(sizeof(Vec*)+sizeof(PetscInt)) + gmres->vecs_allocated*sizeof(Vec));CHKERRQ(ierr); if (gmres->q_preallocate) { gmres->vv_allocated = VEC_OFFSET + 2 + max_k; ierr = KSPCreateVecs(ksp,gmres->vv_allocated,&gmres->user_work[0],0,NULL);CHKERRQ(ierr); ierr = PetscLogObjectParents(ksp,gmres->vv_allocated,gmres->user_work[0]);CHKERRQ(ierr); gmres->mwork_alloc[0] = gmres->vv_allocated; gmres->nwork_alloc = 1; for (k=0; kvv_allocated; k++) { gmres->vecs[k] = gmres->user_work[0][k]; } } else { gmres->vv_allocated = 5; ierr = KSPCreateVecs(ksp,5,&gmres->user_work[0],0,NULL);CHKERRQ(ierr); ierr = PetscLogObjectParents(ksp,5,gmres->user_work[0]);CHKERRQ(ierr); gmres->mwork_alloc[0] = 5; gmres->nwork_alloc = 1; for (k=0; kvv_allocated; k++) { gmres->vecs[k] = gmres->user_work[0][k]; } } PetscFunctionReturn(0); } /* Run gmres, possibly with restart. Return residual history if requested. input parameters: . gmres - structure containing parameters and work areas output parameters: . nres - residuals (from preconditioned system) at each step. If restarting, consider passing nres+it. If null, ignored . itcount - number of iterations used. nres[0] to nres[itcount] are defined. If null, ignored. Notes: On entry, the value in vector VEC_VV(0) should be the initial residual (this allows shortcuts where the initial preconditioned residual is 0). */ PetscErrorCode KSPGMRESCycle(PetscInt *itcount,KSP ksp) { KSP_GMRES *gmres = (KSP_GMRES*)(ksp->data); PetscReal res_norm,res,hapbnd,tt; PetscErrorCode ierr; PetscInt it = 0, max_k = gmres->max_k; PetscBool hapend = PETSC_FALSE; PetscFunctionBegin; if (itcount) *itcount = 0; ierr = VecNormalize(VEC_VV(0),&res_norm);CHKERRQ(ierr); KSPCheckNorm(ksp,res_norm); res = res_norm; *GRS(0) = res_norm; gmres->res_beta = res_norm; // DRL /* check for the convergence */ ierr = PetscObjectSAWsTakeAccess((PetscObject)ksp);CHKERRQ(ierr); ksp->rnorm = res; ierr = PetscObjectSAWsGrantAccess((PetscObject)ksp);CHKERRQ(ierr); gmres->it = (it - 1); ierr = KSPLogResidualHistory(ksp,res);CHKERRQ(ierr); ierr = KSPMonitor(ksp,ksp->its,res);CHKERRQ(ierr); if (!res) { ksp->reason = KSP_CONVERGED_ATOL; ierr = PetscInfo(ksp,"Converged due to zero residual norm on entry\n");CHKERRQ(ierr); PetscFunctionReturn(0); } ierr = (*ksp->converged)(ksp,ksp->its,res,&ksp->reason,ksp->cnvP);CHKERRQ(ierr); while (!ksp->reason && it < max_k && ksp->its < ksp->max_it) { if (it) { ierr = KSPLogResidualHistory(ksp,res);CHKERRQ(ierr); ierr = KSPMonitor(ksp,ksp->its,res);CHKERRQ(ierr); } gmres->it = (it - 1); if (gmres->vv_allocated <= it + VEC_OFFSET + 1) { ierr = KSPGMRESGetNewVectors(ksp,it+1);CHKERRQ(ierr); } ierr = KSP_PCApplyBAorAB(ksp,VEC_VV(it),VEC_VV(1+it),VEC_TEMP_MATOP);CHKERRQ(ierr); /* update hessenberg matrix and do Gram-Schmidt */ ierr = (*gmres->orthog)(ksp,it);CHKERRQ(ierr); if (ksp->reason) break; /* vv(i+1) . vv(i+1) */ ierr = VecNormalize(VEC_VV(it+1),&tt);CHKERRQ(ierr); /* save the magnitude */ *HH(it+1,it) = tt; *HES(it+1,it) = tt; /* check for the happy breakdown */ hapbnd = PetscAbsScalar(tt / *GRS(it)); if (hapbnd > gmres->haptol) hapbnd = gmres->haptol; if (tt < hapbnd) { ierr = PetscInfo2(ksp,"Detected happy breakdown, current hapbnd = %14.12e tt = %14.12e\n",(double)hapbnd,(double)tt);CHKERRQ(ierr); hapend = PETSC_TRUE; } ierr = KSPGMRESUpdateHessenberg(ksp,it,hapend,&res);CHKERRQ(ierr); it++; gmres->it = (it-1); /* For converged */ ksp->its++; ksp->rnorm = res; if (ksp->reason) break; ierr = (*ksp->converged)(ksp,ksp->its,res,&ksp->reason,ksp->cnvP);CHKERRQ(ierr); /* Catch error in happy breakdown and signal convergence and break from loop */ if (hapend) { if (!ksp->reason) { if (ksp->errorifnotconverged) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"You reached the happy break down, but convergence was not indicated. Residual norm = %g",(double)res); else { ksp->reason = KSP_DIVERGED_BREAKDOWN; break; } } } } /* Monitor if we know that we will not return for a restart */ if (it && (ksp->reason || ksp->its >= ksp->max_it)) { ierr = KSPLogResidualHistory(ksp,res);CHKERRQ(ierr); ierr = KSPMonitor(ksp,ksp->its,res);CHKERRQ(ierr); } if (itcount) *itcount = it; /* Down here we have to solve for the "best" coefficients of the Krylov columns, add the solution values together, and possibly unwind the preconditioning from the solution */ /* Form the solution (or the solution so far) */ ierr = KSPGMRESBuildSoln(GRS(0),ksp->vec_sol,ksp->vec_sol,ksp,it-1);CHKERRQ(ierr); PetscFunctionReturn(0); } PetscErrorCode KSPSolve_GMRES(KSP ksp) { PetscErrorCode ierr; PetscInt its,itcount,i; KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscBool guess_zero = ksp->guess_zero; PetscInt N = gmres->max_k + 1; PetscBLASInt bN; PetscFunctionBegin; if (ksp->calc_sings && !gmres->Rsvd) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_ORDER,"Must call KSPSetComputeSingularValues() before KSPSetUp() is called"); ierr = PetscObjectSAWsTakeAccess((PetscObject)ksp);CHKERRQ(ierr); ksp->its = 0; ierr = PetscObjectSAWsGrantAccess((PetscObject)ksp);CHKERRQ(ierr); itcount = 0; gmres->fullcycle = 0; ksp->reason = KSP_CONVERGED_ITERATING; while (!ksp->reason) { ierr = KSPInitialResidual(ksp,ksp->vec_sol,VEC_TEMP,VEC_TEMP_MATOP,VEC_VV(0),ksp->vec_rhs);CHKERRQ(ierr); ierr = KSPGMRESCycle(&its,ksp);CHKERRQ(ierr); /* Store the Hessenberg matrix and the basis vectors of the Krylov subspace if the cycle is complete for the computation of the Ritz pairs */ if (its == gmres->max_k) { gmres->fullcycle++; if (ksp->calc_ritz) { if (!gmres->hes_ritz) { ierr = PetscMalloc1(N*N,&gmres->hes_ritz);CHKERRQ(ierr); ierr = PetscLogObjectMemory((PetscObject)ksp,N*N*sizeof(PetscScalar));CHKERRQ(ierr); ierr = VecDuplicateVecs(VEC_VV(0),N,&gmres->vecb);CHKERRQ(ierr); } ierr = PetscBLASIntCast(N,&bN);CHKERRQ(ierr); ierr = PetscMemcpy(gmres->hes_ritz,gmres->hes_origin,bN*bN*sizeof(PetscReal));CHKERRQ(ierr); for (i=0; imax_k+1; i++) { ierr = VecCopy(VEC_VV(i),gmres->vecb[i]);CHKERRQ(ierr); } } } itcount += its; if (itcount >= ksp->max_it) { if (!ksp->reason) ksp->reason = KSP_DIVERGED_ITS; break; } ksp->guess_zero = PETSC_FALSE; /* every future call to KSPInitialResidual() will have nonzero guess */ } ksp->guess_zero = guess_zero; /* restore if user provided nonzero initial guess */ PetscFunctionReturn(0); } PetscErrorCode KSPReset_GMRES(KSP ksp) { KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscErrorCode ierr; PetscInt i; PetscFunctionBegin; /* Free the Hessenberg matrices */ ierr = PetscFree6(gmres->hh_origin,gmres->hes_origin,gmres->rs_origin,gmres->cc_origin,gmres->ss_origin,gmres->hes_ritz);CHKERRQ(ierr); /* free work vectors */ ierr = PetscFree(gmres->vecs);CHKERRQ(ierr); for (i=0; inwork_alloc; i++) { ierr = VecDestroyVecs(gmres->mwork_alloc[i],&gmres->user_work[i]);CHKERRQ(ierr); } gmres->nwork_alloc = 0; if (gmres->vecb) { ierr = VecDestroyVecs(gmres->max_k+1,&gmres->vecb);CHKERRQ(ierr); } ierr = PetscFree(gmres->user_work);CHKERRQ(ierr); ierr = PetscFree(gmres->mwork_alloc);CHKERRQ(ierr); ierr = PetscFree(gmres->nrs);CHKERRQ(ierr); ierr = VecDestroy(&gmres->sol_temp);CHKERRQ(ierr); ierr = PetscFree(gmres->Rsvd);CHKERRQ(ierr); ierr = PetscFree(gmres->Dsvd);CHKERRQ(ierr); ierr = PetscFree(gmres->orthogwork);CHKERRQ(ierr); gmres->sol_temp = 0; gmres->vv_allocated = 0; gmres->vecs_allocated = 0; gmres->sol_temp = 0; PetscFunctionReturn(0); } PetscErrorCode KSPDestroy_GMRES(KSP ksp) { PetscErrorCode ierr; PetscFunctionBegin; ierr = KSPReset_GMRES(ksp);CHKERRQ(ierr); ierr = PetscFree(ksp->data);CHKERRQ(ierr); /* clear composed functions */ ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESSetPreAllocateVectors_C",NULL);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESSetOrthogonalization_C",NULL);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESGetOrthogonalization_C",NULL);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESSetRestart_C",NULL);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESGetRestart_C",NULL);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESSetHapTol_C",NULL);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESSetCGSRefinementType_C",NULL);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESGetCGSRefinementType_C",NULL);CHKERRQ(ierr); PetscFunctionReturn(0); } void trans(PetscInt nr, PetscInt nc, PetscScalar* A, PetscScalar* AT) { // DRL int ii, jj; for(jj=0; jjdata); PetscFunctionBegin; /* Solve for solution vector that minimizes the residual */ /* If it is < 0, no gmres steps have been performed */ if (it < 0) { ierr = VecCopy(vs,vdest);CHKERRQ(ierr); /* VecCopy() is smart, exists immediately if vguess == vdest */ PetscFunctionReturn(0); } if (*HH(it,it) != 0.0) { nrs[it] = *GRS(it) / *HH(it,it); } else { ksp->reason = KSP_DIVERGED_BREAKDOWN; ierr = PetscInfo2(ksp,"Likely your matrix or preconditioner is singular. HH(it,it) is identically zero; it = %D GRS(it) = %g\n",it,(double)PetscAbsScalar(*GRS(it)));CHKERRQ(ierr); PetscFunctionReturn(0); } for (ii=1; ii<=it; ii++) { k = it - ii; tt = *GRS(k); for (j=k+1; j<=it; j++) tt = tt - *HH(k,j) * nrs[j]; if (*HH(k,k) == 0.0) { ksp->reason = KSP_DIVERGED_BREAKDOWN; ierr = PetscInfo1(ksp,"Likely your matrix or preconditioner is singular. HH(k,k) is identically zero; k = %D\n",k);CHKERRQ(ierr); PetscFunctionReturn(0); } nrs[k] = tt / *HH(k,k); } /*{ // https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/dgesvd_ex.c.htm // DRL PetscInt ii, jj; PetscInt m = 6, n = 5; PetscScalar A[30] = { 8.79, 6.11, -9.15, 9.57, -3.49, 9.84, 9.93, 6.91, -7.93, 1.64, 4.02, 0.15, 9.83, 5.04, 4.86, 8.83, 9.80, -8.99, 5.45, -0.27, 4.85, 0.74, 10.00, -6.02, 3.16, 7.98, 3.01, 5.80, 4.27, -5.31 }; PetscScalar S[n], U[m*m], VT[n*n], UT[m*m], V[n*n], AT[m*n]; PetscInt lwork = 999; PetscScalar work[lwork]; PetscStackCallBLAS("LAPACKgesvd",LAPACKgesvd_("A","A",&m,&n,A,&m,S,UT,&m,V,&n,work,&lwork,&ierr)); trans(m, m, UT, U); trans(n, n, V, VT); for(ii = 0; ii < n; ii++) { printf("\t%g", S[ii]); } printf("\n\n"); for(jj = 0; jj < m; jj++) { for(ii = 0; ii < m; ii++) { printf("\t%g", U[jj*m+ii]); } printf("\n"); } printf("\n\n"); for(jj = 0; jj < n; jj++) { for(ii = 0; ii < n; ii++) { printf("\t%g", VT[jj*n+ii]); } printf("\n"); } printf("\n\n"); }*/ // DRL /* Perform the hookstep correct - DRL */ if(/*gmres->delta > 0.0 &&*/ gmres->it > 1) { // Apply the hookstep to correct the GMRES solution (if required) PetscInt ii, jj, nRows, nCols; PetscBLASInt nRows_blas, nCols_blas, lwork, lierr; PetscScalar *R, *H, *work; PetscReal* S; PetscScalar *U, *VT, *UT, *V, *p, *q, *y; PetscScalar beta, mu, qMag, qMag2, delta2; ierr = PetscMalloc1((gmres->max_k + 3)*(gmres->max_k + 9),&R);CHKERRQ(ierr); ierr = PetscMalloc1(6*(gmres->max_k+2),&S);CHKERRQ(ierr); nRows = gmres->it+1; nCols = nRows-1; printf("\t\tnr: %d\tnc: %d\n",nRows,nCols); printf("\t\tapplying hookstep: initial delta: %lf", gmres->delta); ierr = PetscBLASIntCast(nRows,&nRows_blas);CHKERRQ(ierr);//gmres->it+1 ierr = PetscBLASIntCast(nCols,&nCols_blas);CHKERRQ(ierr);//gmres->it+0 ierr = PetscBLASIntCast(5*nRows,&lwork);CHKERRQ(ierr); ierr = PetscMalloc1(5*nRows,&work);CHKERRQ(ierr); ierr = PetscMalloc1(nRows*nCols,&R);CHKERRQ(ierr); ierr = PetscMalloc1(nRows*nCols,&H);CHKERRQ(ierr); for (jj = 0; jj < nRows; jj++) { for (ii = 0; ii < nCols; ii++) { R[jj*nCols+ii] = *HES(jj,ii); } } // Duplicate the Hessenberg matrix as the one passed to the SVD solver is destroyed for (ii=0; iires_beta; for (ii=0; ii gmres->delta) { mu *= 1.1; qMag2 = 0.0; for (ii=0; iidelta = PetscSqrtScalar(delta2); printf("\t\t...final delta: %lf\n", gmres->delta); // Pass the orthnomalized Krylov vector weights back out for (ii=0; iidelta > 0.0) { ierr = VecMAXPY(VEC_TEMP,nnz,nrs,&VEC_VV(0));CHKERRQ(ierr); // DRL //} else { //ierr = VecMAXPY(VEC_TEMP,it+1,nrs,&VEC_VV(0));CHKERRQ(ierr); //} ierr = KSPUnwindPreconditioner(ksp,VEC_TEMP,VEC_TEMP_MATOP);CHKERRQ(ierr); /* add solution to previous solution */ if (vdest != vs) { ierr = VecCopy(vs,vdest);CHKERRQ(ierr); } ierr = VecAXPY(vdest,1.0,VEC_TEMP);CHKERRQ(ierr); PetscFunctionReturn(0); } /* Do the scalar work for the orthogonalization. Return new residual norm. */ static PetscErrorCode KSPGMRESUpdateHessenberg(KSP ksp,PetscInt it,PetscBool hapend,PetscReal *res) { PetscScalar *hh,*cc,*ss,tt; PetscInt j; KSP_GMRES *gmres = (KSP_GMRES*)(ksp->data); PetscFunctionBegin; hh = HH(0,it); cc = CC(0); ss = SS(0); /* Apply all the previously computed plane rotations to the new column of the Hessenberg matrix */ for (j=1; j<=it; j++) { tt = *hh; *hh = PetscConj(*cc) * tt + *ss * *(hh+1); hh++; *hh = *cc++ * *hh - (*ss++ * tt); } /* compute the new plane rotation, and apply it to: 1) the right-hand-side of the Hessenberg system 2) the new column of the Hessenberg matrix thus obtaining the updated value of the residual */ if (!hapend) { tt = PetscSqrtScalar(PetscConj(*hh) * *hh + PetscConj(*(hh+1)) * *(hh+1)); if (tt == 0.0) { ksp->reason = KSP_DIVERGED_NULL; PetscFunctionReturn(0); } *cc = *hh / tt; *ss = *(hh+1) / tt; *GRS(it+1) = -(*ss * *GRS(it)); *GRS(it) = PetscConj(*cc) * *GRS(it); *hh = PetscConj(*cc) * *hh + *ss * *(hh+1); *res = PetscAbsScalar(*GRS(it+1)); } else { /* happy breakdown: HH(it+1, it) = 0, therfore we don't need to apply another rotation matrix (so RH doesn't change). The new residual is always the new sine term times the residual from last time (GRS(it)), but now the new sine rotation would be zero...so the residual should be zero...so we will multiply "zero" by the last residual. This might not be exactly what we want to do here -could just return "zero". */ *res = 0.0; } PetscFunctionReturn(0); } /* This routine allocates more work vectors, starting from VEC_VV(it). */ PetscErrorCode KSPGMRESGetNewVectors(KSP ksp,PetscInt it) { KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscErrorCode ierr; PetscInt nwork = gmres->nwork_alloc,k,nalloc; PetscFunctionBegin; nalloc = PetscMin(ksp->max_it,gmres->delta_allocate); /* Adjust the number to allocate to make sure that we don't exceed the number of available slots */ if (it + VEC_OFFSET + nalloc >= gmres->vecs_allocated) { nalloc = gmres->vecs_allocated - it - VEC_OFFSET; } if (!nalloc) PetscFunctionReturn(0); gmres->vv_allocated += nalloc; ierr = KSPCreateVecs(ksp,nalloc,&gmres->user_work[nwork],0,NULL);CHKERRQ(ierr); ierr = PetscLogObjectParents(ksp,nalloc,gmres->user_work[nwork]);CHKERRQ(ierr); gmres->mwork_alloc[nwork] = nalloc; for (k=0; kvecs[it+VEC_OFFSET+k] = gmres->user_work[nwork][k]; } gmres->nwork_alloc++; PetscFunctionReturn(0); } PetscErrorCode KSPBuildSolution_GMRES(KSP ksp,Vec ptr,Vec *result) { KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscErrorCode ierr; PetscFunctionBegin; if (!ptr) { if (!gmres->sol_temp) { ierr = VecDuplicate(ksp->vec_sol,&gmres->sol_temp);CHKERRQ(ierr); ierr = PetscLogObjectParent((PetscObject)ksp,(PetscObject)gmres->sol_temp);CHKERRQ(ierr); } ptr = gmres->sol_temp; } if (!gmres->nrs) { /* allocate the work area */ ierr = PetscMalloc1(gmres->max_k,&gmres->nrs);CHKERRQ(ierr); ierr = PetscLogObjectMemory((PetscObject)ksp,gmres->max_k*sizeof(PetscScalar));CHKERRQ(ierr); } ierr = KSPGMRESBuildSoln(gmres->nrs,ksp->vec_sol,ptr,ksp,gmres->it);CHKERRQ(ierr); if (result) *result = ptr; PetscFunctionReturn(0); } PetscErrorCode KSPView_GMRES(KSP ksp,PetscViewer viewer) { KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; const char *cstr; PetscErrorCode ierr; PetscBool iascii,isstring; PetscFunctionBegin; ierr = PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);CHKERRQ(ierr); ierr = PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);CHKERRQ(ierr); if (gmres->orthog == KSPGMRESClassicalGramSchmidtOrthogonalization) { switch (gmres->cgstype) { case (KSP_GMRES_CGS_REFINE_NEVER): cstr = "Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement"; break; case (KSP_GMRES_CGS_REFINE_ALWAYS): cstr = "Classical (unmodified) Gram-Schmidt Orthogonalization with one step of iterative refinement"; break; case (KSP_GMRES_CGS_REFINE_IFNEEDED): cstr = "Classical (unmodified) Gram-Schmidt Orthogonalization with one step of iterative refinement when needed"; break; default: SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_ARG_OUTOFRANGE,"Unknown orthogonalization"); } } else if (gmres->orthog == KSPGMRESModifiedGramSchmidtOrthogonalization) { cstr = "Modified Gram-Schmidt Orthogonalization"; } else { cstr = "unknown orthogonalization"; } if (iascii) { ierr = PetscViewerASCIIPrintf(viewer," restart=%D, using %s\n",gmres->max_k,cstr);CHKERRQ(ierr); ierr = PetscViewerASCIIPrintf(viewer," happy breakdown tolerance %g\n",(double)gmres->haptol);CHKERRQ(ierr); } else if (isstring) { ierr = PetscViewerStringSPrintf(viewer,"%s restart %D",cstr,gmres->max_k);CHKERRQ(ierr); } PetscFunctionReturn(0); } /*@C KSPGMRESMonitorKrylov - Calls VecView() for each new direction in the GMRES accumulated Krylov space. Collective on KSP Input Parameters: + ksp - the KSP context . its - iteration number . fgnorm - 2-norm of residual (or gradient) - dummy - an collection of viewers created with KSPViewerCreate() Options Database Keys: . -ksp_gmres_kyrlov_monitor Notes: A new PETSCVIEWERDRAW is created for each Krylov vector so they can all be simultaneously viewed Level: intermediate .keywords: KSP, nonlinear, vector, monitor, view, Krylov space .seealso: KSPMonitorSet(), KSPMonitorDefault(), VecView(), KSPViewersCreate(), KSPViewersDestroy() @*/ PetscErrorCode KSPGMRESMonitorKrylov(KSP ksp,PetscInt its,PetscReal fgnorm,void *dummy) { PetscViewers viewers = (PetscViewers)dummy; KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscErrorCode ierr; Vec x; PetscViewer viewer; PetscBool flg; PetscFunctionBegin; ierr = PetscViewersGetViewer(viewers,gmres->it+1,&viewer);CHKERRQ(ierr); ierr = PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&flg);CHKERRQ(ierr); if (!flg) { ierr = PetscViewerSetType(viewer,PETSCVIEWERDRAW);CHKERRQ(ierr); ierr = PetscViewerDrawSetInfo(viewer,NULL,"Krylov GMRES Monitor",PETSC_DECIDE,PETSC_DECIDE,300,300);CHKERRQ(ierr); } x = VEC_VV(gmres->it+1); ierr = VecView(x,viewer);CHKERRQ(ierr); PetscFunctionReturn(0); } PetscErrorCode KSPSetFromOptions_GMRES(PetscOptionItems *PetscOptionsObject,KSP ksp) { PetscErrorCode ierr; PetscInt restart; PetscReal haptol; KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscBool flg; PetscFunctionBegin; ierr = PetscOptionsHead(PetscOptionsObject,"KSP GMRES Options");CHKERRQ(ierr); ierr = PetscOptionsInt("-ksp_gmres_restart","Number of Krylov search directions","KSPGMRESSetRestart",gmres->max_k,&restart,&flg);CHKERRQ(ierr); if (flg) { ierr = KSPGMRESSetRestart(ksp,restart);CHKERRQ(ierr); } ierr = PetscOptionsReal("-ksp_gmres_haptol","Tolerance for exact convergence (happy ending)","KSPGMRESSetHapTol",gmres->haptol,&haptol,&flg);CHKERRQ(ierr); if (flg) { ierr = KSPGMRESSetHapTol(ksp,haptol);CHKERRQ(ierr); } flg = PETSC_FALSE; ierr = PetscOptionsBool("-ksp_gmres_preallocate","Preallocate Krylov vectors","KSPGMRESSetPreAllocateVectors",flg,&flg,NULL);CHKERRQ(ierr); if (flg) {ierr = KSPGMRESSetPreAllocateVectors(ksp);CHKERRQ(ierr);} ierr = PetscOptionsBoolGroupBegin("-ksp_gmres_classicalgramschmidt","Classical (unmodified) Gram-Schmidt (fast)","KSPGMRESSetOrthogonalization",&flg);CHKERRQ(ierr); if (flg) {ierr = KSPGMRESSetOrthogonalization(ksp,KSPGMRESClassicalGramSchmidtOrthogonalization);CHKERRQ(ierr);} ierr = PetscOptionsBoolGroupEnd("-ksp_gmres_modifiedgramschmidt","Modified Gram-Schmidt (slow,more stable)","KSPGMRESSetOrthogonalization",&flg);CHKERRQ(ierr); if (flg) {ierr = KSPGMRESSetOrthogonalization(ksp,KSPGMRESModifiedGramSchmidtOrthogonalization);CHKERRQ(ierr);} ierr = PetscOptionsEnum("-ksp_gmres_cgs_refinement_type","Type of iterative refinement for classical (unmodified) Gram-Schmidt","KSPGMRESSetCGSRefinementType", KSPGMRESCGSRefinementTypes,(PetscEnum)gmres->cgstype,(PetscEnum*)&gmres->cgstype,&flg);CHKERRQ(ierr); flg = PETSC_FALSE; ierr = PetscOptionsBool("-ksp_gmres_krylov_monitor","Plot the Krylov directions","KSPMonitorSet",flg,&flg,NULL);CHKERRQ(ierr); if (flg) { PetscViewers viewers; ierr = PetscViewersCreate(PetscObjectComm((PetscObject)ksp),&viewers);CHKERRQ(ierr); ierr = KSPMonitorSet(ksp,KSPGMRESMonitorKrylov,viewers,(PetscErrorCode (*)(void**))PetscViewersDestroy);CHKERRQ(ierr); } ierr = PetscOptionsTail();CHKERRQ(ierr); PetscFunctionReturn(0); } PetscErrorCode KSPGMRESSetHapTol_GMRES(KSP ksp,PetscReal tol) { KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscFunctionBegin; if (tol < 0.0) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_ARG_OUTOFRANGE,"Tolerance must be non-negative"); gmres->haptol = tol; PetscFunctionReturn(0); } PetscErrorCode KSPGMRESGetRestart_GMRES(KSP ksp,PetscInt *max_k) { KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscFunctionBegin; *max_k = gmres->max_k; PetscFunctionReturn(0); } PetscErrorCode KSPGMRESSetRestart_GMRES(KSP ksp,PetscInt max_k) { KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscErrorCode ierr; PetscFunctionBegin; if (max_k < 1) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_ARG_OUTOFRANGE,"Restart must be positive"); if (!ksp->setupstage) { gmres->max_k = max_k; } else if (gmres->max_k != max_k) { gmres->max_k = max_k; ksp->setupstage = KSP_SETUP_NEW; /* free the data structures, then create them again */ ierr = KSPReset_GMRES(ksp);CHKERRQ(ierr); } PetscFunctionReturn(0); } PetscErrorCode KSPGMRESSetOrthogonalization_GMRES(KSP ksp,FCN fcn) { PetscFunctionBegin; ((KSP_GMRES*)ksp->data)->orthog = fcn; PetscFunctionReturn(0); } PetscErrorCode KSPGMRESGetOrthogonalization_GMRES(KSP ksp,FCN *fcn) { PetscFunctionBegin; *fcn = ((KSP_GMRES*)ksp->data)->orthog; PetscFunctionReturn(0); } PetscErrorCode KSPGMRESSetPreAllocateVectors_GMRES(KSP ksp) { KSP_GMRES *gmres; PetscFunctionBegin; gmres = (KSP_GMRES*)ksp->data; gmres->q_preallocate = 1; PetscFunctionReturn(0); } PetscErrorCode KSPGMRESSetCGSRefinementType_GMRES(KSP ksp,KSPGMRESCGSRefinementType type) { KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscFunctionBegin; gmres->cgstype = type; PetscFunctionReturn(0); } PetscErrorCode KSPGMRESGetCGSRefinementType_GMRES(KSP ksp,KSPGMRESCGSRefinementType *type) { KSP_GMRES *gmres = (KSP_GMRES*)ksp->data; PetscFunctionBegin; *type = gmres->cgstype; PetscFunctionReturn(0); } /*@ KSPGMRESSetCGSRefinementType - Sets the type of iterative refinement to use in the classical Gram Schmidt orthogonalization. Logically Collective on KSP Input Parameters: + ksp - the Krylov space context - type - the type of refinement Options Database: . -ksp_gmres_cgs_refinement_type Level: intermediate .keywords: KSP, GMRES, iterative refinement .seealso: KSPGMRESSetOrthogonalization(), KSPGMRESCGSRefinementType, KSPGMRESClassicalGramSchmidtOrthogonalization(), KSPGMRESGetCGSRefinementType(), KSPGMRESGetOrthogonalization() @*/ PetscErrorCode KSPGMRESSetCGSRefinementType(KSP ksp,KSPGMRESCGSRefinementType type) { PetscErrorCode ierr; PetscFunctionBegin; PetscValidHeaderSpecific(ksp,KSP_CLASSID,1); PetscValidLogicalCollectiveEnum(ksp,type,2); ierr = PetscTryMethod(ksp,"KSPGMRESSetCGSRefinementType_C",(KSP,KSPGMRESCGSRefinementType),(ksp,type));CHKERRQ(ierr); PetscFunctionReturn(0); } /*@ KSPGMRESGetCGSRefinementType - Gets the type of iterative refinement to use in the classical Gram Schmidt orthogonalization. Not Collective Input Parameter: . ksp - the Krylov space context Output Parameter: . type - the type of refinement Options Database: . -ksp_gmres_cgs_refinement_type Level: intermediate .keywords: KSP, GMRES, iterative refinement .seealso: KSPGMRESSetOrthogonalization(), KSPGMRESCGSRefinementType, KSPGMRESClassicalGramSchmidtOrthogonalization(), KSPGMRESSetCGSRefinementType(), KSPGMRESGetOrthogonalization() @*/ PetscErrorCode KSPGMRESGetCGSRefinementType(KSP ksp,KSPGMRESCGSRefinementType *type) { PetscErrorCode ierr; PetscFunctionBegin; PetscValidHeaderSpecific(ksp,KSP_CLASSID,1); ierr = PetscUseMethod(ksp,"KSPGMRESGetCGSRefinementType_C",(KSP,KSPGMRESCGSRefinementType*),(ksp,type));CHKERRQ(ierr); PetscFunctionReturn(0); } /*@ KSPGMRESSetRestart - Sets number of iterations at which GMRES, FGMRES and LGMRES restarts. Logically Collective on KSP Input Parameters: + ksp - the Krylov space context - restart - integer restart value Options Database: . -ksp_gmres_restart Note: The default value is 30. Level: intermediate .keywords: KSP, GMRES, restart, iterations .seealso: KSPSetTolerances(), KSPGMRESSetOrthogonalization(), KSPGMRESSetPreAllocateVectors(), KSPGMRESGetRestart() @*/ PetscErrorCode KSPGMRESSetRestart(KSP ksp, PetscInt restart) { PetscErrorCode ierr; PetscFunctionBegin; PetscValidLogicalCollectiveInt(ksp,restart,2); ierr = PetscTryMethod(ksp,"KSPGMRESSetRestart_C",(KSP,PetscInt),(ksp,restart));CHKERRQ(ierr); PetscFunctionReturn(0); } /*@ KSPGMRESGetRestart - Gets number of iterations at which GMRES, FGMRES and LGMRES restarts. Not Collective Input Parameter: . ksp - the Krylov space context Output Parameter: . restart - integer restart value Note: The default value is 30. Level: intermediate .keywords: KSP, GMRES, restart, iterations .seealso: KSPSetTolerances(), KSPGMRESSetOrthogonalization(), KSPGMRESSetPreAllocateVectors(), KSPGMRESSetRestart() @*/ PetscErrorCode KSPGMRESGetRestart(KSP ksp, PetscInt *restart) { PetscErrorCode ierr; PetscFunctionBegin; ierr = PetscUseMethod(ksp,"KSPGMRESGetRestart_C",(KSP,PetscInt*),(ksp,restart));CHKERRQ(ierr); PetscFunctionReturn(0); } /*@ KSPGMRESSetHapTol - Sets tolerance for determining happy breakdown in GMRES, FGMRES and LGMRES. Logically Collective on KSP Input Parameters: + ksp - the Krylov space context - tol - the tolerance Options Database: . -ksp_gmres_haptol Note: Happy breakdown is the rare case in GMRES where an 'exact' solution is obtained after a certain number of iterations. If you attempt more iterations after this point unstable things can happen hence very occasionally you may need to set this value to detect this condition Level: intermediate .keywords: KSP, GMRES, tolerance .seealso: KSPSetTolerances() @*/ PetscErrorCode KSPGMRESSetHapTol(KSP ksp,PetscReal tol) { PetscErrorCode ierr; PetscFunctionBegin; PetscValidLogicalCollectiveReal(ksp,tol,2); ierr = PetscTryMethod((ksp),"KSPGMRESSetHapTol_C",(KSP,PetscReal),((ksp),(tol)));CHKERRQ(ierr); PetscFunctionReturn(0); } /*MC KSPGMRES - Implements the Generalized Minimal Residual method. (Saad and Schultz, 1986) with restart Options Database Keys: + -ksp_gmres_restart - the number of Krylov directions to orthogonalize against . -ksp_gmres_haptol - sets the tolerance for "happy ending" (exact convergence) . -ksp_gmres_preallocate - preallocate all the Krylov search directions initially (otherwise groups of vectors are allocated as needed) . -ksp_gmres_classicalgramschmidt - use classical (unmodified) Gram-Schmidt to orthogonalize against the Krylov space (fast) (the default) . -ksp_gmres_modifiedgramschmidt - use modified Gram-Schmidt in the orthogonalization (more stable, but slower) . -ksp_gmres_cgs_refinement_type - determine if iterative refinement is used to increase the stability of the classical Gram-Schmidt orthogonalization. - -ksp_gmres_krylov_monitor - plot the Krylov space generated Level: beginner Notes: Left and right preconditioning are supported, but not symmetric preconditioning. References: . 1. - YOUCEF SAAD AND MARTIN H. SCHULTZ, GMRES: A GENERALIZED MINIMAL RESIDUAL ALGORITHM FOR SOLVING NONSYMMETRIC LINEAR SYSTEMS. SIAM J. ScI. STAT. COMPUT. Vo|. 7, No. 3, July 1986. .seealso: KSPCreate(), KSPSetType(), KSPType (for list of available types), KSP, KSPFGMRES, KSPLGMRES, KSPGMRESSetRestart(), KSPGMRESSetHapTol(), KSPGMRESSetPreAllocateVectors(), KSPGMRESSetOrthogonalization(), KSPGMRESGetOrthogonalization(), KSPGMRESClassicalGramSchmidtOrthogonalization(), KSPGMRESModifiedGramSchmidtOrthogonalization(), KSPGMRESCGSRefinementType, KSPGMRESSetCGSRefinementType(), KSPGMRESGetCGSRefinementType(), KSPGMRESMonitorKrylov(), KSPSetPCSide() M*/ PETSC_EXTERN PetscErrorCode KSPCreate_GMRES(KSP ksp) { KSP_GMRES *gmres; PetscErrorCode ierr; PetscFunctionBegin; ierr = PetscNewLog(ksp,&gmres);CHKERRQ(ierr); ksp->data = (void*)gmres; ierr = KSPSetSupportedNorm(ksp,KSP_NORM_PRECONDITIONED,PC_LEFT,4);CHKERRQ(ierr); ierr = KSPSetSupportedNorm(ksp,KSP_NORM_UNPRECONDITIONED,PC_RIGHT,3);CHKERRQ(ierr); ierr = KSPSetSupportedNorm(ksp,KSP_NORM_PRECONDITIONED,PC_SYMMETRIC,2);CHKERRQ(ierr); ierr = KSPSetSupportedNorm(ksp,KSP_NORM_NONE,PC_RIGHT,1);CHKERRQ(ierr); ierr = KSPSetSupportedNorm(ksp,KSP_NORM_NONE,PC_LEFT,1);CHKERRQ(ierr); ksp->ops->buildsolution = KSPBuildSolution_GMRES; ksp->ops->setup = KSPSetUp_GMRES; ksp->ops->solve = KSPSolve_GMRES; ksp->ops->reset = KSPReset_GMRES; ksp->ops->destroy = KSPDestroy_GMRES; ksp->ops->view = KSPView_GMRES; ksp->ops->setfromoptions = KSPSetFromOptions_GMRES; ksp->ops->computeextremesingularvalues = KSPComputeExtremeSingularValues_GMRES; ksp->ops->computeeigenvalues = KSPComputeEigenvalues_GMRES; #if !defined(PETSC_USE_COMPLEX) && !defined(PETSC_HAVE_ESSL) ksp->ops->computeritz = KSPComputeRitz_GMRES; #endif ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESSetPreAllocateVectors_C",KSPGMRESSetPreAllocateVectors_GMRES);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESSetOrthogonalization_C",KSPGMRESSetOrthogonalization_GMRES);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESGetOrthogonalization_C",KSPGMRESGetOrthogonalization_GMRES);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESSetRestart_C",KSPGMRESSetRestart_GMRES);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESGetRestart_C",KSPGMRESGetRestart_GMRES);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESSetHapTol_C",KSPGMRESSetHapTol_GMRES);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESSetCGSRefinementType_C",KSPGMRESSetCGSRefinementType_GMRES);CHKERRQ(ierr); ierr = PetscObjectComposeFunction((PetscObject)ksp,"KSPGMRESGetCGSRefinementType_C",KSPGMRESGetCGSRefinementType_GMRES);CHKERRQ(ierr); gmres->haptol = 1.0e-30; gmres->q_preallocate = 0; gmres->delta_allocate = GMRES_DELTA_DIRECTIONS; gmres->orthog = KSPGMRESClassicalGramSchmidtOrthogonalization; gmres->nrs = 0; gmres->sol_temp = 0; gmres->max_k = GMRES_DEFAULT_MAXK; gmres->Rsvd = 0; gmres->cgstype = KSP_GMRES_CGS_REFINE_NEVER; gmres->orthogwork = 0; gmres->delta = -1.0; // DRL PetscFunctionReturn(0); }