<div dir="ltr">Hi Matt,<div><br></div><div>Perhaps. I need to think more about weather this system is over-determined, and if so how to recover the velocity components from the Newton iteration.</div><div><br></div><div>Thanks for your help.</div><div><br></div><div>Cheers, Dave.</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, Apr 5, 2019 at 1:27 PM Matthew Knepley <<a href="mailto:knepley@gmail.com">knepley@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="ltr">On Thu, Apr 4, 2019 at 9:11 PM Dave Lee <<a href="mailto:davelee2804@gmail.com" target="_blank">davelee2804@gmail.com</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Hey Matt,<div><br></div><div>I'm not solving NS per se, but rather wrapping up a Navier Stokes solver within a SNES to iterate over the solution of the Navier Stokes equations with a certain time period in order to determine approximate periodic solutions to the NS equations (with some corrections).</div><div><br></div><div>My residual vector is basically a difference between the final and initial velocity states of the NS solve (with corrections). However since one component can be diagnosed from the others via the divergence free condition (up to a constant), I suspect that maybe what I should be doing is just omit one of the velocity components from the residual vector, and then diagnose this from the others via incompressibility, rather than try and correct for this after the vectors have already been assembled. This is all outside the scope of my PETSc question, and I don't expect you to have an answer, just mentioning it since you asked.</div></div></blockquote><div><br></div><div>Interesting.  It sounds like you can impose this condition the same way we impose \int p = 0.</div><div><br></div><div>  Thanks,</div><div><br></div><div>    Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Cheers, Dave.</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, Apr 5, 2019 at 12:12 AM Jed Brown <<a href="mailto:jed@jedbrown.org" target="_blank">jed@jedbrown.org</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Mark Adams via petsc-users <<a href="mailto:petsc-users@mcs.anl.gov" target="_blank">petsc-users@mcs.anl.gov</a>> writes:<br>
<br>
> On Thu, Apr 4, 2019 at 7:35 AM Dave Lee <<a href="mailto:davelee2804@gmail.com" target="_blank">davelee2804@gmail.com</a>> wrote:<br>
><br>
>> I already have the Navier Stokes solver. My issue is wrapping it in a JFNK<br>
>> solver to find the periodic solutions. I will keep reading up on SVD<br>
>> approaches, there may be some capability for something like this in SLEPc.<br>
>><br>
><br>
> Yes, SLEPc will give you parallel eigen solvers, etc.<br>
<br>
Even so, computing a null space will be *much* more expensive than solving linear systems.<br>
</blockquote></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail-m_-6525770687887157163gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>
</blockquote></div>