<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""><div class="">Var: 0,…,5 are the 6 variables that I am solving for: u, v, w, theta_x, theta_y, theta_z. </div><div class=""><br class=""></div><div class="">The norms identified in my email are the L2 norms of all dofs corresponding to each variable in the solution vector. So, var: 0: u: norm is the L2 norm of the dofs for u only, and so on. </div><div class=""><br class=""></div><div class="">I expect u, v, theta_z to be zero for the solution, which ends up being the case. </div><div class=""><br class=""></div><div class="">If I plot the solution, they look sensible, but the reduction of KSP norm is slow. </div><div class=""><br class=""></div><div class=""><br class=""></div>Thanks,<br class=""><div>Manav</div><div><br class=""><blockquote type="cite" class=""><div class="">On Oct 28, 2018, at 3:55 PM, Smith, Barry F. <<a href="mailto:bsmith@mcs.anl.gov" class="">bsmith@mcs.anl.gov</a>> wrote:</div><br class="Apple-interchange-newline"><div class=""><br style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><br style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><blockquote type="cite" style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;" class="">On Oct 28, 2018, at 12:16 PM, Manav Bhatia <<a href="mailto:bhatiamanav@gmail.com" class="">bhatiamanav@gmail.com</a>> wrote:<br class=""><br class="">Hi,<span class="Apple-converted-space"> </span><br class=""><br class=""> I am attempting to solve a Mindlin plate bending problem with AMG solver in petsc. This test case is with a mesh of 300x300 elements and 543,606 dofs.<span class="Apple-converted-space"> </span><br class=""><br class=""> The discretization includes 6 variables (u, v, w, tx, ty, tz), but only three are relevant for plate bending (w, tx, ty).<span class="Apple-converted-space"> </span><br class=""><br class=""> I am calling the solver with the following options:<span class="Apple-converted-space"> </span><br class=""><br class="">-pc_type gamg -pc_gamg_threshold 0. --node-major-dofs -mat_block_size 6 -ksp_rtol 1.e-8 -ksp_monitor -ksp_converged_reason -ksp_view<span class="Apple-converted-space"> </span><br class=""><br class=""> And the convergence behavior is shown below, along with the ksp_view information. Based on notes in the manual, this seems to be subpar convergence rate. At the end of the solution the norm of each variable is :<span class="Apple-converted-space"> </span><br class=""><br class="">var: 0: u : norm: 5.505909e-18<br class="">var: 1: v : norm: 7.639640e-18<br class="">var: 2: w : norm: 3.901464e-03<br class="">var: 3: tx : norm: 4.403576e-02<br class="">var: 4: ty : norm: 4.403576e-02<br class="">var: 5: tz : norm: 1.148409e-16<br class=""></blockquote><br style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><span style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none; float: none; display: inline !important;" class=""> What do you mean by var: 2: w : norm etc? Is this the norm of the error for that variable, the norm of the residual, something else? How exactly are you calculating it?</span><br style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><br style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><span style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none; float: none; display: inline !important;" class=""> Thanks</span><br style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><br style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><br style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><span style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none; float: none; display: inline !important;" class=""> Barry</span><br style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><br style="caret-color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><blockquote type="cite" style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;" class=""><br class=""> I tried different values of -ksp_rtol from 1e-1 to 1e-8 and this does not make a lot of difference in the norms of (w, tx, ty).<span class="Apple-converted-space"> </span><br class=""><br class=""> I do provide the solver with 6 rigid-body vectors to approximate the null-space of the problem. Without these the solver shows very poor convergence.<span class="Apple-converted-space"> </span><br class=""><br class=""> I would appreciate advice on possible strategies to improve this behavior.<span class="Apple-converted-space"> </span><br class=""><br class="">Thanks,<br class="">Manav<span class="Apple-converted-space"> </span><br class=""><br class=""> 0 KSP Residual norm 1.696304497261e+00<span class="Apple-converted-space"> </span><br class=""> 1 KSP Residual norm 1.120485505777e+00<span class="Apple-converted-space"> </span><br class=""> 2 KSP Residual norm 8.324222302402e-01<span class="Apple-converted-space"> </span><br class=""> 3 KSP Residual norm 6.477349534115e-01<span class="Apple-converted-space"> </span><br class=""> 4 KSP Residual norm 5.080936471292e-01<span class="Apple-converted-space"> </span><br class=""> 5 KSP Residual norm 4.051099646638e-01<span class="Apple-converted-space"> </span><br class=""> 6 KSP Residual norm 3.260432664653e-01<span class="Apple-converted-space"> </span><br class=""> 7 KSP Residual norm 2.560483838143e-01<span class="Apple-converted-space"> </span><br class=""> 8 KSP Residual norm 2.029943986124e-01<span class="Apple-converted-space"> </span><br class=""> 9 KSP Residual norm 1.560985741610e-01<span class="Apple-converted-space"> </span><br class=""> 10 KSP Residual norm 1.163720702140e-01<span class="Apple-converted-space"> </span><br class=""> 11 KSP Residual norm 8.488411085459e-02<span class="Apple-converted-space"> </span><br class=""> 12 KSP Residual norm 5.888041729034e-02<span class="Apple-converted-space"> </span><br class=""> 13 KSP Residual norm 4.027792209980e-02<span class="Apple-converted-space"> </span><br class=""> 14 KSP Residual norm 2.819048087304e-02<span class="Apple-converted-space"> </span><br class=""> 15 KSP Residual norm 1.904674196962e-02<span class="Apple-converted-space"> </span><br class=""> 16 KSP Residual norm 1.289302447822e-02<span class="Apple-converted-space"> </span><br class=""> 17 KSP Residual norm 9.162203296376e-03<span class="Apple-converted-space"> </span><br class=""> 18 KSP Residual norm 7.016781679507e-03<span class="Apple-converted-space"> </span><br class=""> 19 KSP Residual norm 5.399170865328e-03<span class="Apple-converted-space"> </span><br class=""> 20 KSP Residual norm 4.254385887482e-03<span class="Apple-converted-space"> </span><br class=""> 21 KSP Residual norm 3.530831740621e-03<span class="Apple-converted-space"> </span><br class=""> 22 KSP Residual norm 2.946780747923e-03<span class="Apple-converted-space"> </span><br class=""> 23 KSP Residual norm 2.339361361128e-03<span class="Apple-converted-space"> </span><br class=""> 24 KSP Residual norm 1.815072489282e-03<span class="Apple-converted-space"> </span><br class=""> 25 KSP Residual norm 1.408814185342e-03<span class="Apple-converted-space"> </span><br class=""> 26 KSP Residual norm 1.063795714320e-03<span class="Apple-converted-space"> </span><br class=""> 27 KSP Residual norm 7.828540233117e-04<span class="Apple-converted-space"> </span><br class=""> 28 KSP Residual norm 5.683910750067e-04<span class="Apple-converted-space"> </span><br class=""> 29 KSP Residual norm 4.131151010250e-04<span class="Apple-converted-space"> </span><br class=""> 30 KSP Residual norm 3.065608221019e-04<span class="Apple-converted-space"> </span><br class=""> 31 KSP Residual norm 2.634114273459e-04<span class="Apple-converted-space"> </span><br class=""> 32 KSP Residual norm 2.198180137626e-04<span class="Apple-converted-space"> </span><br class=""> 33 KSP Residual norm 1.748956510799e-04<span class="Apple-converted-space"> </span><br class=""> 34 KSP Residual norm 1.317539710010e-04<span class="Apple-converted-space"> </span><br class=""> 35 KSP Residual norm 9.790121566055e-05<span class="Apple-converted-space"> </span><br class=""> 36 KSP Residual norm 7.465935386094e-05<span class="Apple-converted-space"> </span><br class=""> 37 KSP Residual norm 5.689506626052e-05<span class="Apple-converted-space"> </span><br class=""> 38 KSP Residual norm 4.413136619126e-05<span class="Apple-converted-space"> </span><br class=""> 39 KSP Residual norm 3.512194236402e-05<span class="Apple-converted-space"> </span><br class=""> 40 KSP Residual norm 2.877755408287e-05<span class="Apple-converted-space"> </span><br class=""> 41 KSP Residual norm 2.340080556431e-05<span class="Apple-converted-space"> </span><br class=""> 42 KSP Residual norm 1.904544450345e-05<span class="Apple-converted-space"> </span><br class=""> 43 KSP Residual norm 1.504723478235e-05<span class="Apple-converted-space"> </span><br class=""> 44 KSP Residual norm 1.141381950576e-05<span class="Apple-converted-space"> </span><br class=""> 45 KSP Residual norm 8.206151384599e-06<span class="Apple-converted-space"> </span><br class=""> 46 KSP Residual norm 5.911426091276e-06<span class="Apple-converted-space"> </span><br class=""> 47 KSP Residual norm 4.233669089283e-06<span class="Apple-converted-space"> </span><br class=""> 48 KSP Residual norm 2.898052944223e-06<span class="Apple-converted-space"> </span><br class=""> 49 KSP Residual norm 2.023556779973e-06<span class="Apple-converted-space"> </span><br class=""> 50 KSP Residual norm 1.459108043935e-06<span class="Apple-converted-space"> </span><br class=""> 51 KSP Residual norm 1.097335545865e-06<span class="Apple-converted-space"> </span><br class=""> 52 KSP Residual norm 8.440457332262e-07<span class="Apple-converted-space"> </span><br class=""> 53 KSP Residual norm 6.705616854004e-07<span class="Apple-converted-space"> </span><br class=""> 54 KSP Residual norm 5.404888680234e-07<span class="Apple-converted-space"> </span><br class=""> 55 KSP Residual norm 4.391368084979e-07<span class="Apple-converted-space"> </span><br class=""> 56 KSP Residual norm 3.697063014621e-07<span class="Apple-converted-space"> </span><br class=""> 57 KSP Residual norm 3.021772094146e-07<span class="Apple-converted-space"> </span><br class=""> 58 KSP Residual norm 2.479354520792e-07<span class="Apple-converted-space"> </span><br class=""> 59 KSP Residual norm 2.013077841968e-07<span class="Apple-converted-space"> </span><br class=""> 60 KSP Residual norm 1.553159612793e-07<span class="Apple-converted-space"> </span><br class=""> 61 KSP Residual norm 1.400784224898e-07<span class="Apple-converted-space"> </span><br class=""> 62 KSP Residual norm 9.707453662195e-08<span class="Apple-converted-space"> </span><br class=""> 63 KSP Residual norm 7.263173080146e-08<span class="Apple-converted-space"> </span><br class=""> 64 KSP Residual norm 5.593723572132e-08<span class="Apple-converted-space"> </span><br class=""> 65 KSP Residual norm 4.448788809586e-08<span class="Apple-converted-space"> </span><br class=""> 66 KSP Residual norm 3.613992590778e-08<span class="Apple-converted-space"> </span><br class=""> 67 KSP Residual norm 2.946099051876e-08<span class="Apple-converted-space"> </span><br class=""> 68 KSP Residual norm 2.408053564170e-08<span class="Apple-converted-space"> </span><br class=""> 69 KSP Residual norm 1.945257374856e-08<span class="Apple-converted-space"> </span><br class=""> 70 KSP Residual norm 1.572494535110e-08<span class="Apple-converted-space"> </span><br class=""><br class=""><br class="">KSP Object: 4 MPI processes<br class=""> type: gmres<br class=""> restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement<br class=""> happy breakdown tolerance 1e-30<br class=""> maximum iterations=10000, initial guess is zero<br class=""> tolerances: relative=1e-08, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using PRECONDITIONED norm type for convergence test<br class="">PC Object: 4 MPI processes<br class=""> type: gamg<br class=""> type is MULTIPLICATIVE, levels=6 cycles=v<br class=""> Cycles per PCApply=1<br class=""> Using externally compute Galerkin coarse grid matrices<br class=""> GAMG specific options<br class=""> Threshold for dropping small values in graph on each level = 0. 0. 0. 0. <br class=""> Threshold scaling factor for each level not specified = 1.<br class=""> AGG specific options<br class=""> Symmetric graph false<br class=""> Number of levels to square graph 1<br class=""> Number smoothing steps 1<br class=""> Coarse grid solver -- level -------------------------------<br class=""> KSP Object: (mg_coarse_) 4 MPI processes<br class=""> type: preonly<br class=""> maximum iterations=10000, initial guess is zero<br class=""> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using NONE norm type for convergence test<br class=""> PC Object: (mg_coarse_) 4 MPI processes<br class=""> type: bjacobi<br class=""> number of blocks = 4<br class=""> Local solve is same for all blocks, in the following KSP and PC objects:<br class=""> KSP Object: (mg_coarse_sub_) 1 MPI processes<br class=""> type: preonly<br class=""> maximum iterations=1, initial guess is zero<br class=""> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using NONE norm type for convergence test<br class=""> PC Object: (mg_coarse_sub_) 1 MPI processes<br class=""> type: lu<br class=""> out-of-place factorization<br class=""> tolerance for zero pivot 2.22045e-14<br class=""> using diagonal shift on blocks to prevent zero pivot [INBLOCKS]<br class=""> matrix ordering: nd<br class=""> factor fill ratio given 5., needed 1.<br class=""> Factored matrix follows:<br class=""> Mat Object: 1 MPI processes<br class=""> type: seqaij<br class=""> rows=6, cols=6, bs=6<br class=""> package used to perform factorization: petsc<br class=""> total: nonzeros=36, allocated nonzeros=36<br class=""> total number of mallocs used during MatSetValues calls =0<br class=""> using I-node routines: found 2 nodes, limit used is 5<br class=""> linear system matrix = precond matrix:<br class=""> Mat Object: 1 MPI processes<br class=""> type: seqaij<br class=""> rows=6, cols=6, bs=6<br class=""> total: nonzeros=36, allocated nonzeros=36<br class=""> total number of mallocs used during MatSetValues calls =0<br class=""> using I-node routines: found 2 nodes, limit used is 5<br class=""> linear system matrix = precond matrix:<br class=""> Mat Object: 4 MPI processes<br class=""> type: mpiaij<br class=""> rows=6, cols=6, bs=6<br class=""> total: nonzeros=36, allocated nonzeros=36<br class=""> total number of mallocs used during MatSetValues calls =0<br class=""> using nonscalable MatPtAP() implementation<br class=""> using I-node (on process 0) routines: found 2 nodes, limit used is 5<br class=""> Down solver (pre-smoother) on level 1 -------------------------------<br class=""> KSP Object: (mg_levels_1_) 4 MPI processes<br class=""> type: chebyshev<br class=""> eigenvalue estimates used: min = 0.099971, max = 1.09968<br class=""> eigenvalues estimate via gmres min 0.154032, max 0.99971<br class=""> eigenvalues estimated using gmres with translations [0. 0.1; 0. 1.1]<br class=""> KSP Object: (mg_levels_1_esteig_) 4 MPI processes<br class=""> type: gmres<br class=""> restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement<br class=""> happy breakdown tolerance 1e-30<br class=""> maximum iterations=10, initial guess is zero<br class=""> tolerances: relative=1e-12, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using PRECONDITIONED norm type for convergence test<br class=""> estimating eigenvalues using noisy right hand side<br class=""> maximum iterations=2, nonzero initial guess<br class=""> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using NONE norm type for convergence test<br class=""> PC Object: (mg_levels_1_) 4 MPI processes<br class=""> type: sor<br class=""> type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.<br class=""> linear system matrix = precond matrix:<br class=""> Mat Object: 4 MPI processes<br class=""> type: mpiaij<br class=""> rows=54, cols=54, bs=6<br class=""> total: nonzeros=2916, allocated nonzeros=2916<br class=""> total number of mallocs used during MatSetValues calls =0<br class=""> using I-node (on process 0) routines: found 11 nodes, limit used is 5<br class=""> Up solver (post-smoother) same as down solver (pre-smoother)<br class=""> Down solver (pre-smoother) on level 2 -------------------------------<br class=""> KSP Object: (mg_levels_2_) 4 MPI processes<br class=""> type: chebyshev<br class=""> eigenvalue estimates used: min = 0.171388, max = 1.88526<br class=""> eigenvalues estimate via gmres min 0.0717873, max 1.71388<br class=""> eigenvalues estimated using gmres with translations [0. 0.1; 0. 1.1]<br class=""> KSP Object: (mg_levels_2_esteig_) 4 MPI processes<br class=""> type: gmres<br class=""> restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement<br class=""> happy breakdown tolerance 1e-30<br class=""> maximum iterations=10, initial guess is zero<br class=""> tolerances: relative=1e-12, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using PRECONDITIONED norm type for convergence test<br class=""> estimating eigenvalues using noisy right hand side<br class=""> maximum iterations=2, nonzero initial guess<br class=""> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using NONE norm type for convergence test<br class=""> PC Object: (mg_levels_2_) 4 MPI processes<br class=""> type: sor<br class=""> type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.<br class=""> linear system matrix = precond matrix:<br class=""> Mat Object: 4 MPI processes<br class=""> type: mpiaij<br class=""> rows=642, cols=642, bs=6<br class=""> total: nonzeros=99468, allocated nonzeros=99468<br class=""> total number of mallocs used during MatSetValues calls =0<br class=""> using nonscalable MatPtAP() implementation<br class=""> using I-node (on process 0) routines: found 47 nodes, limit used is 5<br class=""> Up solver (post-smoother) same as down solver (pre-smoother)<br class=""> Down solver (pre-smoother) on level 3 -------------------------------<br class=""> KSP Object: (mg_levels_3_) 4 MPI processes<br class=""> type: chebyshev<br class=""> eigenvalue estimates used: min = 0.164216, max = 1.80637<br class=""> eigenvalues estimate via gmres min 0.0376323, max 1.64216<br class=""> eigenvalues estimated using gmres with translations [0. 0.1; 0. 1.1]<br class=""> KSP Object: (mg_levels_3_esteig_) 4 MPI processes<br class=""> type: gmres<br class=""> restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement<br class=""> happy breakdown tolerance 1e-30<br class=""> maximum iterations=10, initial guess is zero<br class=""> tolerances: relative=1e-12, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using PRECONDITIONED norm type for convergence test<br class=""> estimating eigenvalues using noisy right hand side<br class=""> maximum iterations=2, nonzero initial guess<br class=""> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using NONE norm type for convergence test<br class=""> PC Object: (mg_levels_3_) 4 MPI processes<br class=""> type: sor<br class=""> type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.<br class=""> linear system matrix = precond matrix:<br class=""> Mat Object: 4 MPI processes<br class=""> type: mpiaij<br class=""> rows=6726, cols=6726, bs=6<br class=""> total: nonzeros=941796, allocated nonzeros=941796<br class=""> total number of mallocs used during MatSetValues calls =0<br class=""> using nonscalable MatPtAP() implementation<br class=""> using I-node (on process 0) routines: found 552 nodes, limit used is 5<br class=""> Up solver (post-smoother) same as down solver (pre-smoother)<br class=""> Down solver (pre-smoother) on level 4 -------------------------------<br class=""> KSP Object: (mg_levels_4_) 4 MPI processes<br class=""> type: chebyshev<br class=""> eigenvalue estimates used: min = 0.163283, max = 1.79611<br class=""> eigenvalues estimate via gmres min 0.0350306, max 1.63283<br class=""> eigenvalues estimated using gmres with translations [0. 0.1; 0. 1.1]<br class=""> KSP Object: (mg_levels_4_esteig_) 4 MPI processes<br class=""> type: gmres<br class=""> restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement<br class=""> happy breakdown tolerance 1e-30<br class=""> maximum iterations=10, initial guess is zero<br class=""> tolerances: relative=1e-12, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using PRECONDITIONED norm type for convergence test<br class=""> estimating eigenvalues using noisy right hand side<br class=""> maximum iterations=2, nonzero initial guess<br class=""> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using NONE norm type for convergence test<br class=""> PC Object: (mg_levels_4_) 4 MPI processes<br class=""> type: sor<br class=""> type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.<br class=""> linear system matrix = precond matrix:<br class=""> Mat Object: 4 MPI processes<br class=""> type: mpiaij<br class=""> rows=41022, cols=41022, bs=6<br class=""> total: nonzeros=2852316, allocated nonzeros=2852316<br class=""> total number of mallocs used during MatSetValues calls =0<br class=""> using nonscalable MatPtAP() implementation<br class=""> using I-node (on process 0) routines: found 3432 nodes, limit used is 5<br class=""> Up solver (post-smoother) same as down solver (pre-smoother)<br class=""> Down solver (pre-smoother) on level 5 -------------------------------<br class=""> KSP Object: (mg_levels_5_) 4 MPI processes<br class=""> type: chebyshev<br class=""> eigenvalue estimates used: min = 0.157236, max = 1.7296<br class=""> eigenvalues estimate via gmres min 0.0317897, max 1.57236<br class=""> eigenvalues estimated using gmres with translations [0. 0.1; 0. 1.1]<br class=""> KSP Object: (mg_levels_5_esteig_) 4 MPI processes<br class=""> type: gmres<br class=""> restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement<br class=""> happy breakdown tolerance 1e-30<br class=""> maximum iterations=10, initial guess is zero<br class=""> tolerances: relative=1e-12, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using PRECONDITIONED norm type for convergence test<br class=""> estimating eigenvalues using noisy right hand side<br class=""> maximum iterations=2, nonzero initial guess<br class=""> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.<br class=""> left preconditioning<br class=""> using NONE norm type for convergence test<br class=""> PC Object: (mg_levels_5_) 4 MPI processes<br class=""> type: sor<br class=""> type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.<br class=""> linear system matrix = precond matrix:<br class=""> Mat Object: () 4 MPI processes<br class=""> type: mpiaij<br class=""> rows=543606, cols=543606, bs=6<br class=""> total: nonzeros=29224836, allocated nonzeros=29302596<br class=""> total number of mallocs used during MatSetValues calls =0<br class=""> has attached near null space<br class=""> using I-node (on process 0) routines: found 45644 nodes, limit used is 5<br class=""> Up solver (post-smoother) same as down solver (pre-smoother)<br class=""> linear system matrix = precond matrix:<br class=""> Mat Object: () 4 MPI processes<br class=""> type: mpiaij<br class=""> rows=543606, cols=543606, bs=6<br class=""> total: nonzeros=29224836, allocated nonzeros=29302596<br class=""> total number of mallocs used during MatSetValues calls =0<br class=""> has attached near null space<br class=""> using I-node (on process 0) routines: found 45644 nodes, limit used is 5</blockquote></div></blockquote></div><br class=""></body></html>