
A. Stability Eigensolution

Under the assumption of periodic motion, X�
f = exp(�t)X̃�

f and X�
s = exp(�t)X̃�

s , with complex �, Eq. (2)
can be converted into a linear eigenvalue problem,
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and solved for the critical unstable roots. The eigenproblem is solved for increasing values of flight speed

and the roots closest to the imaginary axis are tracked to identify the crossover from the left-half (stable) to

the right-half (unstable) plane. The intersection of the root-locus with the imaginary axis identifies flutter.

B. Nonlinear Eigensolution

The large number of fluid degrees-of-freedom can cause the dimensionality of Eq. (3) to be very high, causing

potential increase in computational cost. In order to reduce the problem size, Eq. (3) is converted into a

more tractable form by using Schur decomposition to express the problem in terms of only the structural

unknowns.
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The first row of Eq. (3) can be rewritten as

(�M↵ + J↵)X̃
�
f = �Jfs(�)X̃

�
s , (4)

where, Jfs(�) = J0
fs + �J1

fs. Next, from the last row of Eq. (3)

�2MssX̃
�
s = �(Jss + �Css)X̃

�
s � JsfX̃

�
f . (5)

Given X̃�
s , Eq. (4) is used to solve for X̃�

f and substitute in the right-hand-side of Eq. (5) to create a

nonlinear eigenvalue problem in terms of only the structural degrees-of-freedom,

�2MssX̃
�
s =

⇣
�(Jss + �Css) + Jsf (�M↵ + J↵)

�1 Jfs(�)
⌘
X̃�

s . (6)

A nonlinear eigensolver can be used to solve this problem on a reduced space in comparison with Eq. (3).

C. Frequency-domain Approach

The solutions of Eqs. (3) and (6) are mathematically exact for the damped oscillatory response of the coupled

system represented by �. However, with the focus on finding flutter roots corresponding to zero damping in

the coupled system, a further approximation is made to simplify the computational cost.

It is assumed that the aerodynamic operator is purely oscillatory, i.e., for the purpose of Eq. (4) and the

inverse operator on the right hand side of Eq. (6), Re(�) = 0. This converts the aerodynamic operator into

frequency-domain

(i!M↵ + J↵)X̃
�
f = �Jfs(i!)X̃

�
s , (7)

Eq. (7) can be multiplied by b/V1 to convert ! into the reduced frequency kred. Similarly, the stability

eigenproblem, Eq. (6), uses the frequency-domain fluid response

�2MssX̃
�
s =

�
�(Jss + �Css) + Jsf(i!M↵ + J↵)

�1Jfs(i!)
�
X̃�

s . (8)

Recognizing that the structural natural modes with the lowest natural frequency typically participate to

create the aeroelastic flutter mode, Eq. (8) is projected onto the normal modes of the structure. Let

T = [Ys1, Ys2, . . . , Y �
sM ] be the matrix of M structural modes. The structural degrees-of-freedom are then

expressed as X̃�
s = Tq, where q is the vector of M generalized coordinates, leading to the

�2T TMssTq = T T
�
�(Jss + �Css) + Jsf(i!M↵ + J↵)

�1Jfs(i!)
�
Tq. (9)

With the definition of a reduced frequency parameter kred = !b/V1, with b as a reference length, Eq. (9)

simplifies to

(�2I + �C̃ +⌦)q =
⇢fV 2

2
A(ikred)q, (10)
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