<div dir="ltr"><div class="gmail_quote"><div dir="ltr">On Sun, Oct 14, 2018 at 3:56 PM zakaryah <<a href="mailto:zakaryah@gmail.com">zakaryah@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="auto"><div dir="auto">Hi Matt,<div dir="auto"><br></div></div><div class="gmail_quote" dir="auto"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div dir="ltr"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
> Can you explain more about this source term? It sounds like a bunch of<br>
> delta functions. That<br>
> would still work in this framework, but the convergence rate for a rhs<br>
> with these singularities<br>
> is reduced (this is a generic feature of FEM).<br></blockquote></div></div></div></blockquote></div><div dir="auto"><br></div><div dir="auto">Can you elaborate on this, or suggest references? In the context of elasticity, does this mean that convergence for problems using node forces us generally worse than with the equivalent body forces? Thanks!</div><div class="gmail_quote" dir="auto"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div dir="ltr"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"></blockquote></div></div></div>
</blockquote></div></div>
</blockquote></div><br clear="all"><div>Think of the simplest example, which is a Laplacian with a delta function source. The solution is the Green's function 1/r.</div><div>This is singular at the origin (and not in the FEM space), and the standard FEM bases are bad at approximating 1/r near the origin.</div><div>Babuska has a bunch of papers on this. Now what does "worse" mean in the context of node forces vs tractions? It means that the</div><div>convergence of your computed solution, as you refine the mesh, is slower to the true solution of the node forces problem then it is</div><div>to the true solution of the tractions problem.</div><div><br></div><div> Matt</div><div><br></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>