<div dir="ltr"><div class="gmail_quote"><div dir="ltr">On Fri, Oct 5, 2018 at 9:08 PM Mike Wick <<a href="mailto:michael.wick.1980@gmail.com">michael.wick.1980@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div>Hello PETSc team:<br></div><div><br></div><div>I am trying to solve a PDE problem with high-order finite elements. The matrix is getting denser and my experience is that MUMPS just outperforms iterative solvers.</div></div></blockquote><div><br></div><div>If the problem is elliptic, there is a lot of evidence that the P1 preconditioner is descent for the system. Some people</div><div>just project the system to P1, invert that with multigrid, and use that as the PC for Krylov. It should be worth trying.</div><div>Moreover, as Jed will tell you, forming matrices for higher order is counterproductive. You should apply those matrix-free.</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div>For certain problems, MUMPS just fail in the middle for no clear reason. I just wander if there is any suggestion to improve the robustness of MUMPS? Or in general, any suggestion for interative solver with very high-order finite elements?</div><div><br></div><div>Thanks!</div><div><br></div><div>Mike<br></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>