<div dir="ltr"><div>As Matt said you should see the initial 2-norm residual asymptote to a constant with scaling, but it will rise.<br></div><div><div><br></div>I prefer the max norm for this reason. You can use -<span class="gmail-il">ksp_monitor_max, but this does compute an extra residual, apparently, but I don't understand why it should ...</span></div><div><br></div><div>If this does not asymptotic to constant and your problem is linear, you have a bug.</div><div><div><br><div class="gmail_quote"><div dir="ltr">On Mon, Oct 1, 2018 at 6:31 PM Weizhuo Wang <<a href="mailto:weizhuo2@illinois.edu" target="_blank">weizhuo2@illinois.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi!<div><br></div><div>I'm recently trying out the example code provided with the KSP solver (ex12.c). I noticed that the mean norm of the grid increases as I use finer meshes. For example, the mean norm is 5.72e-8 at m=10 n=10. However at m=100, n=100, mean norm increases to 9.55e-6. This seems counter intuitive, since most of the time error should decreases when using finer grid. Am I doing this wrong?</div><div><br></div><div>Thanks! <br>-- <br><div dir="ltr" class="m_3852171697125143647m_-9147000279931508166gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Wang Weizhuo</div></div></div></div>
</blockquote></div></div></div></div>