<div dir="ltr">Hi Alp,<div><br></div><div>Yes, my minimal energy problem reduces to the solution of (1).</div><div><br></div><div>Is there any reference on the problem you mention in the last paragraph?<br><br></div><div>Thanks,</div><div>Josh</div><div><br></div><div><br></div><div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">2018-09-12 9:26 GMT-05:00 Dener, Alp <span dir="ltr"><<a href="mailto:adener@anl.gov" target="_blank">adener@anl.gov</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">



<div style="word-wrap:break-word;line-break:after-white-space">
Hi Josh,
<div><br>
</div>
<div>In the FormFunctionAndGradient() function, the gradient you compute and provide TAO must be the gradient of the objective function with respect to the optimization variables. If your optimization variables are u, and your objective function is
 J(u), then FormFunctionGradient would need to compute J(u) and dJ/du.</div>
<div><br>
</div>
<div>I’m not entirely sure if I understand your problem correctly, but it seems that your minimal energy problem reduces to the solution of equation (1). Is this correct?</div>
<div><br>
</div>
<div>TAO is not the right package to solve time-dependent PDEs like (1) directly. You would want to use TS for that. However, TAO can be used to solve the original energy minimization problem. A good example of this is the canonical obstacle problem
 that aims to minimize the Dirichlet energy function subject to a constraint that represents the obstacle. That problem reduces to the solution of the Laplace equation with the appropriate boundary conditions matching the obstacle, which would be discretized
 and solved as a stand-alone PDE. However, the same problem can also be solved as an optimization problem where the objective function is the Dirichlet energy function, and the associated gradient is related to the stiffness matrix associated with the Laplace
 equation. The two formulations are mathematically equivalent. If I’m interpreting your problem correctly, you should be able to take a similar approach, but you would need to derive the gradient of your energy function and see how you can construct it in relation
 to equation (1).</div>
<div><br>
</div>
<div>
<div>
<div style="word-wrap:break-word;line-break:after-white-space">
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:12px;font-style:normal;font-variant-caps:normal;font-weight:normal;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
——<span class="HOEnZb"><font color="#888888"><br>
<b>Alp Dener</b></font></span></div><span class="HOEnZb"><font color="#888888">
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:12px;font-style:normal;font-variant-caps:normal;font-weight:normal;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
Argonne National Laboratory</div>
<div style="text-align:start;text-indent:0px"><a href="http://www.mcs.anl.gov/person/alp-dener" target="_blank">http://www.mcs.anl.gov/person/<wbr>alp-dener</a></div>
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:12px;font-style:normal;font-variant-caps:normal;font-weight:normal;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
<br>
</div>
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:12px;font-style:normal;font-variant-caps:normal;font-weight:normal;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
</div>
</font></span></div>
</div><div><div class="h5">
<div><br>
<blockquote type="cite">
<div>On Sep 11, 2018, at 3:51 PM, Josh L <<a href="mailto:ysjosh.lo@gmail.com" target="_blank">ysjosh.lo@gmail.com</a>> wrote:</div>
<br class="m_1889243619814234431Apple-interchange-newline">
<div>
<div dir="ltr">Hi,
<div><br>
</div>
<div>I am using PETSc TAO to solve the following equation obtained from minimizing certain energy and constitutive model:</div>
<div><br>
</div>
<div>u_xx - u - u_t =0    (1)</div>
<div><br>
</div>
<div>For simplicity, the coefficients are neglected. </div>
<div>In the routine to form function value and gradient, I use (1) to form my gradient vector, and my energy definition to calculate function value.Is it correct? </div>
<div><br>
</div>
<div>I only found one tao example that solves time dependent problem, but it is using TS which I am not using.</div>
<div><br>
</div>
<div><br>
</div>
<div>Thanks,</div>
<div>Josh</div>
<div> </div>
</div>
</div>
</blockquote>
</div>
<br>
</div></div></div>
</div>

</blockquote></div><br></div>