<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class="">
Jose,
<div class=""><br class="">
</div>
<div class="">Thank you very much for the quick response. I will try the approach for the Krylov solver.</div>
<div class=""><br class="">
</div>
<div class="">Kenneth.<br class="">
<div class="">
<div style="color: rgb(0, 0, 0); letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class="">
<div class=""><span style="orphans: 2; widows: 2;" class="">_________________________________________________________________</span></div>
<div class="">Kenneth C. Hall<br class="">
</div>
</div>
</div>
<div>
<blockquote type="cite" class="">
<div class="">On Aug 7, 2018, at 11:13 AM, Jose E. Roman <<a href="mailto:jroman@dsic.upv.es" class="">jroman@dsic.upv.es</a>> wrote:</div>
<br class="Apple-interchange-newline">
<div class="">
<div class="">Currently there is no straightforward way to do this in SLEPc. For a preconditioned eigensolver such as JD you could use this:<br class="">
<a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__slepc.upv.es_documentation_current_docs_manualpages_ST_STPrecondSetMatForPC.html&d=DwIFaQ&c=imBPVzF25OnBgGmVOlcsiEgHoG1i6YHLR0Sj_gZ4adc&r=HM_IVChvU7XXVyLZB9xFCbw5_4LZNuzGEpVw5dUCyyo&m=L-kD1fTipDH_5BEC-T3FTfZKFQBUO6_ymvkpAiFfe38&s=kZTO6rmsUygc5qVZm5IkYMfjEMPVXloxoE0xi16ccUQ&e=" class="">https://urldefense.proofpoint.com/v2/url?u=http-3A__slepc.upv.es_documentation_current_docs_manualpages_ST_STPrecondSetMatForPC.html&d=DwIFaQ&c=imBPVzF25OnBgGmVOlcsiEgHoG1i6YHLR0Sj_gZ4adc&r=HM_IVChvU7XXVyLZB9xFCbw5_4LZNuzGEpVw5dUCyyo&m=L-kD1fTipDH_5BEC-T3FTfZKFQBUO6_ymvkpAiFfe38&s=kZTO6rmsUygc5qVZm5IkYMfjEMPVXloxoE0xi16ccUQ&e=</a><br class="">
in combination with pc=PCMAT.<br class="">
<br class="">
For a Krylov solver you will have to do something like this:<br class="">
<br class="">
call EPSSetWhichEigenpairs(eps,EPS_TARGET_REAL,ierr);CHKERRA(ierr)<br class="">
call EPSSetTarget(eps,sigma,ierr);CHKERRA(ierr)<br class="">
call EPSGetST(eps,st,ierr);CHKERRA(ierr)<br class="">
call STSetType(st,STSINVERT,ierr);CHKERRA(ierr)<br class="">
call STGetKSP(st,ksp,ierr);CHKERRA(ierr)<br class="">
call KSPGetPC(ksp,pc,ierr);CHKERRA(ierr)<br class="">
call KSPSetType(ksp,KSPBCGS,ierr);CHKERRA(ierr)<br class="">
call PCSetType(pc,PCNONE,ierr);CHKERRA(ierr) ! dummy preconditioner<br class="">
<br class="">
! provide the preconditioner matrix after setup<br class="">
call EPSSetUp(eps,ierr);CHKERRA(ierr)<br class="">
call PCSetOperators(pc,PETSC_NULL_MAT,my_matmul_K,ierr);CHKERRA(ierr)<br class="">
call PCSetType(pc,PCMAT,ierr);CHKERRA(ierr)<br class="">
<br class="">
We may change the interface in future versions so that this can be done in a more natural way.<br class="">
<br class="">
Jose<br class="">
<br class="">
<br class="">
<blockquote type="cite" class="">El 7 ago 2018, a las 16:42, Kenneth Hall, SC.D. <kenneth.c.hall@duke.edu> escribió:<br class="">
<br class="">
Hello,<br class="">
<br class="">
I am new to SLEPc and Petsc, so I would appreciate any help I can get with my question. I have a large eigenvalue problem I am solving, based on the linearization of a nonlinear code. The eigenvalue problem takes the form<br class="">
<br class="">
A.x = lambda.B.x<br class="">
<br class="">
I can generate the matrix B explicitly, but I can only form products of A.x, and not A itself, so I use a shell matrix. I also have an iterative solver I could potentially use as a preconditioner. That is, I have an operator K^-1 where<br class="">
<br class="">
K^-1 \approx (A - sigma.B)^-1<br class="">
<br class="">
But again, I don’t have K^-1 explicitly, rather I can form products of K^-1 with a vector, so I would need to use a shell matrix.<br class="">
<br class="">
I have had success with the un-preconditioned case, but can’t figure out how to do the preconditioned case. Any suggestions would be greatly appreciated. I work with Fortran. A code snippet with the un-preconditioned set-up follows.
<br class="">
<br class="">
Thanks in advance.<br class="">
Kenneth Hall<br class="">
<br class="">
<br class="">
===============================================================<br class="">
<br class="">
!<br class="">
!.... initialize slepc<br class="">
call SlepcInitialize(PETSC_NULL_CHARACTER,ierr) ; if (ierr .ne. 0) then ; stop 'SlepcInitialize failed' ; end if<br class="">
!<br class="">
!.... get size and rank of MPI process<br class="">
call MPI_Comm_size(PETSC_COMM_WORLD,sz ,ierr) ; CHKERRA(ierr)<br class="">
call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
if (sz .ne. 1) then ; SETERRA(PETSC_COMM_SELF,1,'This is a uniprocessor example only!'); endif<br class="">
!<br class="">
!.... get user options<br class="">
call PetscOptionsGetInt (PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-n' ,n ,flg,ierr) ; CHKERRA(ierr)<br class="">
call PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-terse',terse,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... write out option list<br class="">
if (rank .eq. 0 ) then<br class="">
write(*,*) 'n = ',n<br class="">
end if<br class="">
!<br class="">
!.... Register the matrix-vector subroutine for the operator that defines the eigensystem, Ax=kBx<br class="">
call MatCreateShell(PETSC_COMM_WORLD,n,n,n,n,PETSC_NULL_INTEGER,A,ierr) ; CHKERRA(ierr)<br class="">
call MatShellSetOperation(A,MATOP_MULT,my_matmul_A,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... set up B matrix<br class="">
call MatCreate(PETSC_COMM_WORLD,B,ierr) ; CHKERRA(ierr)<br class="">
call MatSetSizes(B,n,n,n,n,ierr) ; CHKERRA(ierr)<br class="">
call MatSetFromOptions(B,ierr) ; CHKERRA(ierr)<br class="">
call MatSetUp(B,ierr) ; CHKERRA(ierr)<br class="">
call My_Matrix_B(B,n)<br class="">
!<br class="">
!.... set up eigenvectors<br class="">
call VecCreate(PETSC_COMM_WORLD,xr,ierr) ; CHKERRA(ierr)<br class="">
call VecSetSizes(xr,n,n,ierr) ; CHKERRA(ierr)<br class="">
call VecSetFromOptions(xr,ierr) ; CHKERRA(ierr)<br class="">
call VecSetUp(xr,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
call VecCreate(PETSC_COMM_WORLD,xi,ierr) ; CHKERRA(ierr)<br class="">
call VecSetSizes(xi,n,n,ierr) ; CHKERRA(ierr)<br class="">
call VecSetFromOptions(xi,ierr) ; CHKERRA(ierr)<br class="">
call VecSetUp(xi,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... Create eigensolver context<br class="">
call EPSCreate(PETSC_COMM_WORLD,eps,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... Set operators. In this case, it is a generalized eigenvalue problem<br class="">
call EPSSetOperators(eps,A,B,ierr) ; CHKERRA(ierr)<br class="">
call EPSSetProblemType(eps,EPS_GNHEP,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... set default options<br class="">
call EPSSetType(eps,EPSKRYLOVSCHUR,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... set default eigenvalues to find<br class="">
call EPSSetWhichEigenpairs(eps,EPS_LARGEST_REAL,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... number of requested eigenvalues<br class="">
call EPSSetDimensions(eps,nev,PETSC_DEFAULT_INTEGER,PETSC_DEFAULT_INTEGER,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... set stopping criteria<br class="">
call EPSSetTolerances(eps,tol,maxit,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... set up monitors<br class="">
call PetscViewerAndFormatCreate(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_DEFAULT,vf,ierr) ; CHKERRA(ierr)<br class="">
call EPSMonitorSet(eps,EPSMONITORFIRST,vf,PetscViewerAndFormatDestroy,ierr) ; CHKERRA(ierr)<br class="">
call SlepcConvMonitorCreate(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_DEFAULT,ctx,ierr) ; CHKERRA(ierr)<br class="">
call EPSMonitorSet(eps,EPSMONITORCONVERGED,ctx,SlepcConvMonitorDestroy,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... Set solver parameters at runtime<br class="">
call EPSSetFromOptions(eps,ierr) ; CHKERRA(ierr)<br class="">
!<br class="">
!.... Solve the eigensystem<br class="">
call EPSSolve(eps,ierr) ; CHKERRA(ierr)<br class="">
<br class="">
</blockquote>
<br class="">
</div>
</div>
</blockquote>
</div>
<br class="">
</div>
</body>
</html>