<div dir="ltr"><div class="gmail_default" style="font-family:comic sans ms,sans-serif">Thanks Matthew.</div><div class="gmail_default" style="font-family:comic sans ms,sans-serif"><br></div><div class="gmail_default" style="font-family:comic sans ms,sans-serif">By the way, how can I find the execution time of the processor?</div><div class="gmail_default" style="font-family:comic sans ms,sans-serif"><br></div><div class="gmail_default" style="font-family:comic sans ms,sans-serif"><br></div><div class="gmail_extra"><br><div class="gmail_quote">On Thu, Jul 19, 2018 at 7:34 PM, Matthew Knepley <span dir="ltr"><<a href="mailto:knepley@gmail.com" target="_blank">knepley@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><span class=""><div dir="ltr">On Thu, Jul 19, 2018 at 1:44 PM Fazlul Huq <<a href="mailto:huq2090@gmail.com" target="_blank">huq2090@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div style="font-family:comic sans ms,sans-serif">Hello all,</div><div style="font-family:comic sans ms,sans-serif"><br></div><div style="font-family:comic sans ms,sans-serif">I can run the following code with this command showing output on the console: ./poisson_m -ksp_view_solution</div></div></blockquote><div><br></div></span><div>What is the question? To put that ASCII output in a file, use</div><div><br></div><div>-ksp_view_solution :sol.txt</div><div><br></div><div>There is a chapter in the manual on viewing.</div><div><br></div><div>  Thanks,</div><div><br></div><div>    Matt</div><div><div class="h5"><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div style="font-family:comic sans ms,sans-serif">The code is: <br>static char help[] = "Solves a tridiagonal linear system.\n\n";<br><br>/*T<br>   Concepts: KSP^basic parallel example;<br>   Processors: n<br>T*/<br><br>/*<br>  Include "petscksp.h" so that we can use KSP solvers.  Note that this file<br>  automatically includes:<br>     petscsys.h       - base PETSc routines   petscvec.h - vectors<br>     petscmat.h - matrices<br>     petscis.h     - index sets            petscksp.h - Krylov subspace methods<br>     petscviewer.h - viewers               petscpc.h  - preconditioners<br><br>  Note:  The corresponding uniprocessor example is ex1.c<br>*/<br>#include <petscksp.h><br><br>int main(int argc,char **args)<br>{<br>  Vec            x, b, u;          /* approx solution, RHS, exact solution */<br>  Mat            A;                /* linear system matrix */<br>  KSP            ksp;              /* linear solver context */<br>  PC             pc;               /* preconditioner context */<br>  PetscReal      norm,tol=1000.*PETSC_MACHINE_<wbr>EPSILON;  /* norm of solution error */<br>  PetscErrorCode ierr;<br>  PetscInt       i,n = 99,col[3],its,rstart,rend,<wbr>nlocal;<br>  PetscScalar    one = 1.0,hundredth = 0.001,leftbc = 10.001,rightbc = 15.001,value[3];<br><br>  ierr = PetscInitialize(&argc,&args,(<wbr>char*)0,help);if (ierr) return ierr;<br>  ierr = PetscOptionsGetInt(NULL,NULL,"<wbr>-n",&n,NULL);CHKERRQ(ierr);<br><br>  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br>         Compute the matrix and right-hand-side vector that define<br>         the linear system, Ax = b.<br>     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */<br><br>  /*<br>     Create vectors.  Note that we form 1 vector from scratch and<br>     then duplicate as needed. For this simple case let PETSc decide how<br>     many elements of the vector are stored on each processor. The second<br>     argument to VecSetSizes() below causes PETSc to decide.<br>  */<br>  ierr = VecCreate(PETSC_COMM_WORLD,&x)<wbr>;CHKERRQ(ierr);<br>  ierr = VecSetSizes(x,PETSC_DECIDE,n);<wbr>CHKERRQ(ierr);<br>  ierr = VecSetFromOptions(x);CHKERRQ(<wbr>ierr);<br>  ierr = VecDuplicate(x,&b);CHKERRQ(<wbr>ierr);<br>  ierr = VecDuplicate(x,&u);CHKERRQ(<wbr>ierr);<br><br>  /* Identify the starting and ending mesh points on each<br>     processor for the interior part of the mesh. We let PETSc decide<br>     above. */<br><br>  ierr = VecGetOwnershipRange(x,&<wbr>rstart,&rend);CHKERRQ(ierr);<br>  ierr = VecGetLocalSize(x,&nlocal);<wbr>CHKERRQ(ierr);<br><br>  /*<br>     Create matrix.  When using MatCreate(), the matrix format can<br>     be specified at runtime.<br><br>     Performance tuning note:  For problems of substantial size,<br>     preallocation of matrix memory is crucial for attaining good<br>     performance. See the matrix chapter of the users manual for details.<br><br>     We pass in nlocal as the "local" size of the matrix to force it<br>     to have the same parallel layout as the vector created above.<br>  */<br>  ierr = MatCreate(PETSC_COMM_WORLD,&A)<wbr>;CHKERRQ(ierr);<br>  ierr = MatSetSizes(A,nlocal,nlocal,n,<wbr>n);CHKERRQ(ierr);<br>  ierr = MatSetFromOptions(A);CHKERRQ(<wbr>ierr);<br>  ierr = MatSetUp(A);CHKERRQ(ierr);<br><br>  /*<br>     Assemble matrix.<br>     The linear system is distributed across the processors by<br>     chunks of contiguous rows, which correspond to contiguous<br>     sections of the mesh on which the problem is discretized.<br>     For matrix assembly, each processor contributes entries for<br>     the part that it owns locally.<br>  */<br><br><br>  if (!rstart) {<br>    rstart = 1;<br>    i      = 0; col[0] = 0; col[1] = 1; value[0] = 2.0; value[1] = -1.0;<br>    ierr   = MatSetValues(A,1,&i,2,col,<wbr>value,INSERT_VALUES);CHKERRQ(<wbr>ierr);<br>  }<br>  if (rend == n) {<br>    rend = n-1;<br>    i    = n-1; col[0] = n-2; col[1] = n-1; value[0] = -1.0; value[1] = 2.0;<br>    ierr = MatSetValues(A,1,&i,2,col,<wbr>value,INSERT_VALUES);CHKERRQ(<wbr>ierr);<br>  }<br><br>  /* Set entries corresponding to the mesh interior */<br>  value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;<br>  for (i=rstart; i<rend; i++) {<br>    col[0] = i-1; col[1] = i; col[2] = i+1;<br>    ierr   = MatSetValues(A,1,&i,3,col,<wbr>value,INSERT_VALUES);CHKERRQ(<wbr>ierr);<br>  }<br><br>  /* Assemble the matrix */<br>  ierr = MatAssemblyBegin(A,MAT_FINAL_<wbr>ASSEMBLY);CHKERRQ(ierr);<br>  ierr = MatAssemblyEnd(A,MAT_FINAL_<wbr>ASSEMBLY);CHKERRQ(ierr);<br><br>  /*<br>     Set exact solution; then compute right-hand-side vector.<br>  */<br>  ierr = VecSet(u,one);CHKERRQ(ierr);<br><br>  i=0;<br>    ierr = VecSetValues(b, 1, &i, &leftbc, INSERT_VALUES);CHKERRQ(ierr);<br>  for (i=1; i<n-1; i++){<br>    ierr = VecSetValues(b, 1, &i, &hundredth, INSERT_VALUES);CHKERRQ(ierr);<br>  }<br>  i=n-1;<br>    ierr = VecSetValues(b, 1, &i, &rightbc, INSERT_VALUES);CHKERRQ(ierr);<br>    ierr = VecAssemblyBegin(b);CHKERRQ(<wbr>ierr);<br>    ierr = VecAssemblyEnd(b);CHKERRQ(<wbr>ierr);<br><br>  // ierr = MatMult(A,u,b);CHKERRQ(ierr);<br><br>  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br>                Create the linear solver and set various options<br>     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */<br>  /*<br>     Create linear solver context<br>  */<br>  ierr = KSPCreate(PETSC_COMM_WORLD,&<wbr>ksp);CHKERRQ(ierr);<br><br>  /*<br>     Set operators. Here the matrix that defines the linear system<br>     also serves as the preconditioning matrix.<br>  */<br>  ierr = KSPSetOperators(ksp,A,A);<wbr>CHKERRQ(ierr);<br><br>  /*<br>     Set linear solver defaults for this problem (optional).<br>     - By extracting the KSP and PC contexts from the KSP context,<br>       we can then directly call any KSP and PC routines to set<br>       various options.<br>     - The following four statements are optional; all of these<br>       parameters could alternatively be specified at runtime via<br>       KSPSetFromOptions();<br>  */<br>  ierr = KSPGetPC(ksp,&pc);CHKERRQ(<wbr>ierr);<br>  ierr = PCSetType(pc,PCJACOBI);<wbr>CHKERRQ(ierr);<br>  ierr = KSPSetTolerances(ksp,1.e-7,<wbr>PETSC_DEFAULT,PETSC_DEFAULT,<wbr>PETSC_DEFAULT);CHKERRQ(ierr);<br><br>  /*<br>    Set runtime options, e.g.,<br>        -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol><br>    These options will override those specified above as long as<br>    KSPSetFromOptions() is called _after_ any other customization<br>    routines.<br>  */<br>  ierr = KSPSetFromOptions(ksp);<wbr>CHKERRQ(ierr);<br><br>  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br>                      Solve the linear system<br>     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */<br>  /*<br>     Solve linear system<br>  */<br>  ierr = KSPSolve(ksp,b,x);CHKERRQ(<wbr>ierr);<br><br>  /*<br>     View solver info; we could instead use the option -ksp_view to<br>     print this info to the screen at the conclusion of KSPSolve().<br>  */<br>  ierr = KSPView(ksp,PETSC_VIEWER_<wbr>STDOUT_WORLD);CHKERRQ(ierr);<br><br>  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br>                      Check solution and clean up<br>     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */<br>  /*<br>     Check the error<br>  */<br>  ierr = VecAXPY(x,-1.0,u);CHKERRQ(<wbr>ierr);<br>  ierr = VecNorm(x,NORM_2,&norm);<wbr>CHKERRQ(ierr);<br>  ierr = KSPGetIterationNumber(ksp,&<wbr>its);CHKERRQ(ierr);<br>  if (norm > tol) {<br>    ierr = PetscPrintf(PETSC_COMM_WORLD,"<wbr>Norm of error %g, Iterations %D\n",(double)norm,its);<wbr>CHKERRQ(ierr);<br>  }<br><br>  /*<br>     Free work space.  All PETSc objects should be destroyed when they<br>     are no longer needed.<br>  */<br>  ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = VecDestroy(&u);CHKERRQ(ierr);<br>  ierr = VecDestroy(&b);CHKERRQ(ierr); ierr = MatDestroy(&A);CHKERRQ(ierr);<br>  ierr = KSPDestroy(&ksp);CHKERRQ(ierr)<wbr>;<br><br>  /*<br>     Always call PetscFinalize() before exiting a program.  This routine<br>       - finalizes the PETSc libraries as well as MPI<br>       - provides summary and diagnostic information if certain runtime<br>         options are chosen (e.g., -log_view).<br>  */<br>  ierr = PetscFinalize();<br>  return ierr;<br>}<br><br><br></div><div style="font-family:comic sans ms,sans-serif">Now I am trying to save this output in a file (say in a .csv file) at runtime along with execution time but I can't. <br></div><div style="font-family:comic sans ms,sans-serif"><br></div><div style="font-family:comic sans ms,sans-serif">Any suggestion please!</div><div style="font-family:comic sans ms,sans-serif"><br></div><div style="font-family:comic sans ms,sans-serif">Sincerely,</div><div style="font-family:comic sans ms,sans-serif">Huq<br></div><br><div>-- </div><div class="m_-4751430312170111959m_-7711997102107006895gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><br><div><font face="comic sans ms, sans-serif">Fazlul Huq</font></div><div><font face="comic sans ms, sans-serif">Graduate Research Assistant</font></div><div><font face="comic sans ms, sans-serif">Department of Nuclear, Plasma & Radiological Engineering (NPRE)</font></div><div><font face="comic sans ms, sans-serif">University of Illinois at Urbana-Champaign (UIUC)</font></div><div><font face="comic sans ms, sans-serif">E-mail: <a href="mailto:huq2090@gmail.com" target="_blank">huq2090@gmail.com</a></font></div></div></div></div></div></div></div>
</div>
</blockquote></div></div></div><span class="HOEnZb"><font color="#888888"><br clear="all"><div><br></div>-- <br><div dir="ltr" class="m_-4751430312170111959gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.caam.rice.edu/~mk51/" target="_blank">https://www.cse.buffalo.edu/~<wbr>knepley/</a><br></div></div></div></div></div></font></span></div>
</blockquote></div><br></div></div>