<div dir="ltr"><div dir="auto">Thanks Matt.<div class="gmail_quote" dir="auto"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div style="font-size:small">2) Is there a way to reuse the KSP for (1) to efficiently solve (2), given the method which answers question 1) ?</div></div></blockquote><div><br></div><div>Not really, unless you use some type of factorization for the preconditioner.</div></div></div></blockquote></div><div dir="auto"><br></div><div dir="auto">Can you elaborate? <div class="gmail_default" style="font-size:small;display:inline">I know that KSP can efficiently solve linear systems with the same matrix but different right-hand sides, just by calling KSPSolve successively. Will this be impossible within the nonlinear solver after calculating the nullspace?</div></div><div dir="auto"><br></div><div class="gmail_quote" dir="auto"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
</blockquote></div></div>
</div>