<div dir="ltr"><div dir="ltr" style="font-size:12.8px">I'm not using any hand-coded Jacobians.<div><br></div><div>Case 1 options: -snes_fd -pc_type lu</div><div><br></div><div><span class="gmail-im"><div>0 Nonlinear |R| = 2.259203e-02</div><div> 0 Linear |R| = 2.259203e-02</div></span><div> 1 Linear |R| = 7.821248e-11</div><span class="gmail-im"><div> 1 Nonlinear |R| = 2.258733e-02</div><div> 0 Linear |R| = 2.258733e-02</div></span><div> 1 Linear |R| = 5.277296e-11</div><span class="gmail-im"><div> 2 Nonlinear |R| = 2.258733e-02</div><div> 0 Linear |R| = 2.258733e-02</div></span><div> 1 Linear |R| = 5.993971e-11</div><span class="gmail-im">Nonlinear solve did not converge due to DIVERGED_LINE_SEARCH iterations 2</span></div><div><br></div><div>Case 2 options: -snes_fd -snes_mf_operator -pc_type lu</div><div><br></div><div><span class="gmail-im"><div> 0 Nonlinear |R| = 2.259203e-02</div><div> 0 Linear |R| = 2.259203e-02</div></span><div> 1 Linear |R| = 2.258733e-02</div><div> 2 Linear |R| = 3.103342e-06</div><div> 3 Linear |R| = 6.779865e-12</div><div> 1 Nonlinear |R| = 7.497740e-06</div><div> 0 Linear |R| = 7.497740e-06</div><div> 1 Linear |R| = 8.265413e-12</div><div> 2 Nonlinear |R| = 7.993729e-12</div><div>Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 2</div></div></div><div class="gmail-yj6qo gmail-ajU" style="margin:2px 0px 0px;font-size:12.8px"><div id="gmail-:2o0" class="gmail-ajR" tabindex="0"><img class="gmail-ajT" src="https://ssl.gstatic.com/ui/v1/icons/mail/images/cleardot.gif" style="opacity: 0.3;"></div></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Dec 12, 2017 at 9:12 AM, zakaryah . <span dir="ltr"><<a href="mailto:zakaryah@gmail.com" target="_blank">zakaryah@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_default" style="font-size:small">When you say "Jacobians are bad" and "debugging the Jacobians", do you mean that the hand-coded Jacobian is wrong? In that case, why would you be surprised that the finite difference Jacobians, which are "correct" to approximation error, perform better? Otherwise, what does "Jacobians are bad" mean - ill-conditioned? Singular? Not symmetric? Not positive definite?</div></div>
</blockquote></div><br></div>