<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    Let me suggest that you grab a hold of Simo and Hughes,
    Computational Inelasticity, Springer-Verlag (1998).  It explains a
    lot about how to set up this problem -- in particular Chapter 1
    gives a comprehensive one-dimensional tutorial on everything you
    need to know.<br>
    <br>
    <div class="moz-cite-prefix">On 7/5/17 9:39 AM, Maximilian Hartig
      wrote:<br>
    </div>
    <blockquote type="cite"
cite="mid:CABO2ERQkOjSDJwc0uGCn=5tfmEORU+i9EYbNo=mcXhV-CsLzCg@mail.gmail.com">
      <div dir="ltr">
        <div>
          <div>
            <div>I do not clearly understand the discrimination between
              local and global plasticity. I do have areas where I
              expect the behaviour to be elastic and other areas where I
              expect elasto-plastic behaviour.<br>
            </div>
            Inertia effects are of importance and hence I need second
            order temporal derivatives of my displacements. The only way
            I have found to implement this in Petsc is to create a
            separate velocity field which I use to then compute ü.<br>
          </div>
          To account for plasticity, in my understanding I need to
          introduce at least one additional history variable. In my case
          this is the effective plastic strain e_p. I then solve the
          equation of motion (grad(sigma)-rho*ü+F=0) and the consistency
          condition (sigma_eq - sigma_yield = 0) at the same time. Or
          try to at least.<br>
        </div>
        <div><br>
        </div>
        <div>Thanks,<br>
        </div>
        <div>Max<br>
        </div>
      </div>
      <div class="gmail_extra"><br>
        <div class="gmail_quote">2017-06-30 20:49 GMT+02:00 Luv Sharma <span
            dir="ltr"><<a href="mailto:luvsharma11@gmail.com"
              target="_blank" moz-do-not-send="true">luvsharma11@gmail.com</a>></span>:<br>
          <blockquote class="gmail_quote" style="margin:0 0 0
            .8ex;border-left:1px #ccc solid;padding-left:1ex">
            <div style="word-wrap:break-word">Hi Max,
              <div><br>
              </div>
              <div>I do not understand the equations that you write very
                clearly. </div>
              <div><br>
              </div>
              <div>Are you looking to implement a “local” and “if” type
                of isotropic hardening plasticity? If that is the case,
                then in my understanding you need to solve only 1 field
                equation for the displacement components or for the
                strain components. You can look at the following code:</div>
              <div><a
href="https://github.com/tdegeus/GooseFFT/blob/master/small-strain/laminate/elasto-plasticity.py"
                  target="_blank" moz-do-not-send="true">https://github.com/tdegeus/<wbr>GooseFFT/blob/master/small-<wbr>strain/laminate/elasto-<wbr>plasticity.py</a></div>
              <div><br>
              </div>
              <div>If you are looking for a PETSc based implementation
                for plasticity (isotropic/anisotropic) you can look at </div>
              <div><a href="https://damask.mpie.de/" target="_blank"
                  moz-do-not-send="true">https://damask.mpie.de/</a></div>
              <div>I had presented a talk about the same at the PETSc
                User Meeting last year.</div>
              <div><br>
              </div>
              <div>As I understand it, additional field equations will
                only be necessary if the plasticity or elasticity were
                “nonlocal”. You may want to look at:</div>
              <div>On the role of moving elastic–plastic boundaries in
                strain gradient plasticity, R H J Peerlings</div>
              <div><br>
              </div>
              <div>Best regards,</div>
              <div>Luv</div>
              <div>
                <div class="h5">
                  <div><br>
                    <div>
                      <blockquote type="cite">
                        <div>On 30 Jun 2017, at 11:52, Maximilian Hartig
                          <<a href="mailto:imilian.hartig@gmail.com"
                            target="_blank" moz-do-not-send="true">imilian.hartig@gmail.com</a>>
                          wrote:</div>
                        <br
                          class="m_6974763644534671648Apple-interchange-newline">
                        <div>
                          <div>Hi Luv,<br>
                            <br>
                            I’m modelling linear hardening(sigma_y =
                            sigma_y0 + K_iso*epsilon_plast_eqiv) with
                            isotropic  plasticity only. So I should not
                            need to use an iterative method to find the
                            point on the yield surface. I have three
                            fields and 7 unknowns in total:<br>
                            Field 0: <span class="m_6974763644534671648Apple-tab-span" style="white-space:pre-wrap">  </span>3
                            displacement components<br>
                            Field 1: <span class="m_6974763644534671648Apple-tab-span" style="white-space:pre-wrap">  </span>3
                            velocity components <br>
                            Field 2: <span class="m_6974763644534671648Apple-tab-span" style="white-space:pre-wrap">  </span>1
                            equivalent plastic strain<br>
                            <br>
                            It is the solver for these three fields that
                            is not converging. I am using PetscFE. As
                            residuals for the plastic case (sigma_vM
                            > sigma_yield) I have:<br>
                            <br>
                            Field 0 (displacement):<br>
                            f0[i] = rho*u_t[u_Off[1]+i]<br>
                            f1[i*dim+j] = sigma_tr[i*dim+j] -
                            2*mu*sqrt(3/2)*u_t[uOff[2]]*N[<wbr>i*dim+j]<br>
                            <br>
                            where sigma_tr is the trial stress, mu is
                            the shear modulus and N is the unit deviator
                            tensor normal to the yield surface.<br>
                            <br>
                            Field 1 (velocity):<br>
                            f0[i] = u[uOff[1]+i]-u_t[i]<br>
                            f1[i*dim+j] = 0<br>
                            <br>
                            Field 2 (effective plastic strain):<br>
                            f0[0] = ||s_tr||
                            -2*mu*sqrt(3/2)*u_t[uOff[2]]-<wbr>sqrt(2/3)*sigma_y<br>
                            f1[i] = 0<br>
                            where ||s_tr|| is the norm of the deviator
                            stress tensor.<br>
                            <br>
                            Field 0 residual is essentially newton’s
                            second law of motion and Field 2 residual
                            should be the yield criterion. I might have
                            just fundamentally misunderstood the
                            equations of plasticity but I cannot seem to
                            find my mistake.<br>
                            <br>
                            Thanks,<br>
                            Max<br>
                            <br>
                            <br>
                            <blockquote type="cite">On 30. Jun 2017, at
                              11:09, Luv Sharma <<a
                                href="mailto:luvsharma11@gmail.com"
                                target="_blank" moz-do-not-send="true">luvsharma11@gmail.com</a>>
                              wrote:<br>
                              <br>
                              Hi Max,<br>
                              <br>
                              Is your field solver not converging or the
                              material point solver ;)? <br>
                              <br>
                              Best regards,<br>
                              Luv<br>
                              <blockquote type="cite">On 30 Jun 2017, at
                                10:45, Maximilian Hartig <<a
                                  href="mailto:imilian.hartig@gmail.com"
                                  target="_blank" moz-do-not-send="true">imilian.hartig@gmail.com</a>>
                                wrote:<br>
                                <br>
                                Hello,<br>
                                <br>
                                I’m trying to implement plasticity and
                                have problems getting the Petsc SNES to
                                converge. To check if my residual
                                formulation is correct I tried running
                                with -snes_fd for an easy example as the
                                Petsc FAQ suggest. I cannot seem to get
                                the solver to converge at any cost.<br>
                                I already tried to impose bounds on the
                                solution and moved to vinewtonrsls as a
                                nonlinear solver. I checked and
                                rechecked my residuals but I do not find
                                an error there. I now have the suspicion
                                that the -snes_fd option is not made for
                                handling residuals who’s first
                                derivatives are not continuous (e.g.
                                have an “if” condition in them for the
                                plasticity/ flow-condition). Can you
                                confirm my suspicion? And is there
                                another way to test my residual
                                formulation separate from my hand-coded
                                jacobian?<br>
                                <br>
                                <br>
                                Thanks,<br>
                                Max<br>
                              </blockquote>
                              <br>
                            </blockquote>
                            <br>
                          </div>
                        </div>
                      </blockquote>
                    </div>
                    <br>
                  </div>
                </div>
              </div>
            </div>
          </blockquote>
        </div>
        <br>
      </div>
    </blockquote>
    <br>
    <pre class="moz-signature" cols="72">-- 
-------------------------------------------------------------------
Sanjay Govindjee, PhD, PE
Horace, Dorothy, and Katherine Johnson Professor in Engineering

779 Davis Hall
University of California
Berkeley, CA 94720-1710

Voice:  +1 510 642 6060
FAX:    +1 510 643 5264
<a class="moz-txt-link-abbreviated" href="mailto:s_g@berkeley.edu">s_g@berkeley.edu</a>
<a class="moz-txt-link-freetext" href="http://faculty.ce.berkeley.edu/sanjay">http://faculty.ce.berkeley.edu/sanjay</a>
-------------------------------------------------------------------

Books:  

Engineering Mechanics of Deformable 
Solids: A Presentation with Exercises
<a class="moz-txt-link-freetext" href="http://www.oup.com/us/catalog/general/subject/Physics/MaterialsScience/?view=usa&ci=9780199651641">http://www.oup.com/us/catalog/general/subject/Physics/MaterialsScience/?view=usa&ci=9780199651641</a>
<a class="moz-txt-link-freetext" href="http://ukcatalogue.oup.com/product/9780199651641.do">http://ukcatalogue.oup.com/product/9780199651641.do</a>
<a class="moz-txt-link-freetext" href="http://amzn.com/0199651647">http://amzn.com/0199651647</a>

Engineering Mechanics 3 (Dynamics) 2nd Edition
<a class="moz-txt-link-freetext" href="http://www.springer.com/978-3-642-53711-0">http://www.springer.com/978-3-642-53711-0</a>
<a class="moz-txt-link-freetext" href="http://amzn.com/3642537111">http://amzn.com/3642537111</a>

Engineering Mechanics 3, Supplementary Problems: Dynamics 
<a class="moz-txt-link-freetext" href="http://www.amzn.com/B00SOXN8JU">http://www.amzn.com/B00SOXN8JU</a>

-----------------------------------------------
</pre>
  </body>
</html>