A NOTE ON PRECONDITIONING NONSYMMETRIC MATRICES*

ILSE C. F. IPSEN ${ }^{\dagger}$

Abstract

The preconditioners for indefinite matrices of KKT form in [M. F. Murphy, G. H. Golub, and A. J. Wathen, SIAM J. Sci. Comput., 21 (2000), pp. 1969-1972] are extended to general nonsymmetric matrices.

Key words. preconditioner, minimal polynomial

AMS subject classifications. 65F10, 15A23
PII. S1064827500377435
In [2] preconditioners for real indefinite matrices of KKT form

$$
\mathcal{A} \equiv\left(\begin{array}{cc}
A & B^{*} \\
C & 0
\end{array}\right)
$$

are presented. ${ }^{1}$ The preconditioners \mathcal{P} are of the following form:

$$
\left(\begin{array}{cc}
A & B^{*} \\
0 & \pm C A^{-1} B^{*}
\end{array}\right), \quad\left(\begin{array}{cc}
A & B^{*} \\
C & 2 C A^{-1} B^{*}
\end{array}\right), \quad\left(\begin{array}{cc}
A & 0 \\
0 & C A^{-1} B^{*}
\end{array}\right) .
$$

The preconditioned matrices $\mathcal{P}^{-1} \mathcal{A}$ have minimal polynomials of degree at most 4 . Hence a Krylov subspace method like GMRES applied to a preconditioned linear system with coefficient matrix $\mathcal{P}^{-1} \mathcal{A}$ converges in 4 iterations or less, in exact arithmetic.

We extend the preconditioners \mathcal{P} in [2] to general matrices \mathcal{A} by deriving them from LU decompositions of \mathcal{A}. As before, the preconditioned matrices $\mathcal{P}^{-1} \mathcal{A}$ and $\mathcal{A} \mathcal{P}^{-1}$ have minimal polynomials of degree at most 4.

Let

$$
\mathcal{A} \equiv\left(\begin{array}{cc}
A & B^{*} \\
C & D
\end{array}\right)
$$

be a complex, nonsingular matrix where the leading principal submatrix A is nonsingular. Let $S \equiv D-C A^{-1} B^{*}$ be the Schur complement with respect to A. Since \mathcal{A} is nonsingular, so is S. The idea is to factor $\mathcal{A}=\mathcal{L D U}$ such that the preconditioned matrix $\mathcal{L}^{-1} \mathcal{A} \mathcal{U}^{-1}=\mathcal{D}$ has a minimal polynomial of small degree.

Proposition 1 (extension of Remark 2 in [2]). If
then

$$
\begin{aligned}
\mathcal{P} & \equiv\left(\begin{array}{cc}
A & B^{*} \\
0 & S
\end{array}\right), \\
\mathcal{A P}^{-1} & =\left(\begin{array}{cc}
I & 0 \\
C A^{-1} & I
\end{array}\right),
\end{aligned}
$$

and $\mathcal{P}^{-1} \mathcal{A}$ and $\mathcal{A} \mathcal{P}^{-1}$ have the minimal polynomial $(\lambda-1)^{2}$.

[^0]Proposition 2 (extension of (5) in [2]). If

$$
\mathcal{P} \equiv\left(\begin{array}{cc}
A & B^{*} \\
0 & -S
\end{array}\right)
$$

then

$$
\mathcal{A P}^{-1}=\left(\begin{array}{cc}
I & 0 \\
C A^{-1} & -I
\end{array}\right)
$$

and $\mathcal{P}^{-1} \mathcal{A}$ and $\mathcal{A} \mathcal{P}^{-1}$ have the minimal polynomial $(\lambda-1)(\lambda+1)$.
The preconditioned matrix below is the same, up to permutations, as the one in [1, section 2.1].

Proposition 3. If

$$
\mathcal{P}_{1} \equiv\left(\begin{array}{cc}
I & 0 \\
C A^{-1} & -I
\end{array}\right), \quad \mathcal{P}_{2} \equiv\left(\begin{array}{cc}
A & B^{*} \\
0 & S
\end{array}\right)
$$

then

$$
\mathcal{P}_{1}^{-1} \mathcal{A} \mathcal{P}_{2}^{-1}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

The preconditioned matrix is also similar to $\mathcal{P}^{-1} \mathcal{A}$ and $\mathcal{A} \mathcal{P}^{-1}$, where

$$
\mathcal{P} \equiv\left(\begin{array}{cc}
A & B^{*} \\
C & D-2 S
\end{array}\right)
$$

which is an extension of the preconditioner in $[2, \mathrm{p} .7]$.
Remark 1. Extending the preconditioner in [2, Proposition 1] to general matrices gives

$$
\mathcal{P} \equiv\left(\begin{array}{ll}
A & \\
& -S
\end{array}\right) .
$$

It can be derived from the scaled $L U$ decomposition $\mathcal{A}=\mathcal{L U D}$, where

$$
\mathcal{L} \equiv\left(\begin{array}{cc}
I & \\
C A^{-1} & I
\end{array}\right), \quad \mathcal{U} \equiv\left(\begin{array}{cc}
I & -B^{*} S^{-1} \\
-I
\end{array}\right), \quad \mathcal{D} \equiv\left(\begin{array}{cc}
A & \\
& -S
\end{array}\right)
$$

The preconditioned matrix is

$$
\mathcal{T} \equiv \mathcal{A} \mathcal{P}^{-1}=\mathcal{L U}=\left(\begin{array}{cc}
I & -B^{*} S^{-1} \\
C A^{-1} & -D S^{-1}
\end{array}\right)
$$

If \mathcal{A} is of KKT form with $D=0$, then

$$
\mathcal{T}^{2}-\mathcal{T}=\left(\begin{array}{cc}
-B^{*} S^{-1} C A^{-1} & 0 \\
0 & I
\end{array}\right)
$$

Since $\left(\mathcal{T}^{2}-\mathcal{T}\right)^{2}=\mathcal{T}^{2}-\mathcal{T}$, the preconditioned matrix \mathcal{T} has a minimal polynomial of degree 4.

REFERENCES

[1] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders, Preconditioners for indefinite systems arising in optimization, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 292-311.
[2] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969-1972.

[^0]: *Received by the editors September 1, 2000; accepted for publication (in revised form) October 18, 2000; published electronically September 26, 2001.
 http://www.siam.org/journals/sisc/23-3/37743.html
 ${ }^{\dagger}$ Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University, P.O. Box 8205, Raleigh, NC 27695-8205 (ipsen@math.ncsu.edu, http://www4. ncsu.edu/~ipsen/). This research was supported in part by NSF grant DMS-9714811.
 ${ }^{1}$ The superscript * denotes the conjugate transpose.

