<div dir="ltr"><div class="gmail_extra"><div class="gmail_quote">On Thu, Apr 6, 2017 at 8:32 AM, Jed Brown <span dir="ltr"><<a href="mailto:jed@jedbrown.org" target="_blank">jed@jedbrown.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span class="">Matthew Knepley <<a href="mailto:knepley@gmail.com">knepley@gmail.com</a>> writes:<br>
> Okay, that makes sense. If I do not have fluxes matching the sources, I do<br>
> not<br>
> preserve montonicity for an advected field. I might need this to machine<br>
> precision<br>
> because some other equations cannot tolerate a negative number there. I will<br>
> write this one down.<br>
><br>
> Why do I need it "for a projection in a staggered grid incompressible flow<br>
> problem".<br>
> This would mean I satisfy (I think)<br>
><br>
> \int_T div p = 0<br>
<br>
</span>Matt Knepley can take the divergence of a scalar.</blockquote><div><br></div><div>Yes, I forgot the grad. It is crazy here. Same question.</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div class="HOEnZb"><div class="h5">
> meaning that there is a force balance on each cell to machine precision. If<br>
> I just care<br>
> about the fluid flow, this does not seem important.<br>
<br>
</div></div></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature">What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div>
</div></div>