<div dir="ltr"><div class="gmail_extra"><div class="gmail_quote">On Wed, Apr 5, 2017 at 12:03 PM, Jed Brown <span dir="ltr"><<a href="mailto:jed@jedbrown.org" target="_blank">jed@jedbrown.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><span class="gmail-">Matthew Knepley <<a href="mailto:knepley@gmail.com">knepley@gmail.com</a>> writes:<br>
> As a side note, I think using FV to solve an elliptic equation should be a<br>
> felony. Continuous FEM is excellent for this, whereas FV needs<br>
> a variety of twisted hacks and is always worse in terms of computation and<br>
> accuracy.<br>
<br>
</span>Unless you need exact (no discretization error) local conservation,<br>
e.g., for a projection in a staggered grid incompressible flow problem,<br>
in which case you can use either FV or mixed FEM (algebraically<br>
equivalent to FV in some cases).<br>
</blockquote></div><br><div class="gmail_extra">Okay, the words are getting in the way of me understanding. I want to see if I can pull something I can use out of the above explanation.</div><div class="gmail_extra"><br></div><div class="gmail_extra">First, "locally conservative" bothers me. It does not seem to indicate what it really does. I start with the Poisson equation</div><div class="gmail_extra"><br></div><div class="gmail_extra">  \Delta p = f</div><div class="gmail_extra"><br></div><div class="gmail_extra">So the setup is then that I discretize both the quantity and its derivative (I will use mixed FEM style since I know it better)</div><div class="gmail_extra"><br></div><div class="gmail_extra">  div  v = f</div><div class="gmail_extra">  grad p = v</div><div class="gmail_extra"><br></div><div class="gmail_extra">Now, you might expect that "local conservation" would give me the exact result for</div><div class="gmail_extra"><br></div><div class="gmail_extra">  \int_T p</div><div class="gmail_extra"><br></div><div class="gmail_extra">everywhere, meaning the integral of p over every cell T. However, there is discretization error in the fluxes v, and then I determine p by adding them up. So the thing that is exact is the fact that anything going out of one cell T, goes into another cell T'. Thus</div><div class="gmail_extra"><br></div><div class="gmail_extra">  \int_\Omega p</div><div class="gmail_extra"><br></div><div class="gmail_extra">is exact IF my boundary conditions for p are also exact. Otherwise they cannot be more accurate than the inflows/outflows. So suppose you have exact BC on your Poisson equation, then you can get exact global conservation. Why is it "locally conservative"? Moreover, why would exact global conservation of p be necessary? That might be equivalent to mass loss, but are you telling me that 10^-8 mass loss is distinguishable from 10^-14? I do not understand that.</div><div class="gmail_extra"><br></div><div class="gmail_extra">  Thanks,</div><div class="gmail_extra"><br></div><div class="gmail_extra">    Matt</div><div><br></div>-- <br><div class="gmail_signature">What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div>
</div></div>