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A TAXONOMY FOR CONJUGATE GRADIENT METHODS*

STEVEN F. ASHBYt, THOMAS A. MANTEUFFEL$, AND PAUL E. SAYLOR

Abstract. The conjugate gradient method of Hestenes and Stiefel is an effective method for
solving large, sparse Hermitian positive definite (hpd) systems of linear equations, Ax b. Gener-
alizations to non-hpd matrices have long been sought. The recent theory of Faber and Manteuffel
gives necessary and sufficient conditions for the existence of a C( method. This paper uses these
conditions to develop and organize such methods. It is shown that any C( method for Ax b is
characterized by an hpd inner product matrix B and a left preconditioning matrix C. At each step
the method minimizes the B-norm of the error over a Krylov subspace. This characterization is
then used to classify known and new methods. Finally, it is shown how eigenvalue estimates may
be obtained from the iteration parameters, generalizing the well-known connection between CG and
Lanczos. Such estimates allow implementation of a stopping criterion based more nearly on the true
error.
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1. Introduction. The need to solve an n n nonsingular system of linear equa-
tions, Ax b, arises in many scientific applications. The matrix A is usually real, but
since complex matrices do occur, for example, in computational electromagnetics, we
will consider the more general case. If A is large and sparse, direct methods are too
expensive and an iterative method is required. When A is Hermitian positive defi-
nite (hpd), Hestenes’s and Stiefel’s method of conjugate gradients (C(HS) is popular
and effective, especially when combined with a preconditioner. Its popularity is due
in part to optimality: at each step the A-norm of the error is minimized over some
subspace. Moreover, CGHS requires no a priori parameter estimates and may be im-
plemented via a 3-term recursion. By minimizing in other than the A-norm, different
C( methods result, some of which are applicable to non-hpd matrices. For example,
the method of conjugate residuals minimizes the Euclidean norm of the residual at
each step and converges for any Hermitian matrix.

Following the theory developed in [16] and [17], we define a CG method to be a
gradient method in which the iterates are chosen from a nested sequence of translated
Krylov subspaces in such a way that the error is minimal in the given inner product
norm at each step. The Krylov subspaces are generated by a preconditioned system
matrix, CA. The choice of inner product matrix B and preconditioning matrix C
completely determine the sequence of iterates. Although such a sequence exists for
any B and C, it may be uncomputable without knowledge of the solution. We thus
restrict our attention to those B and C that yield computable methods.

Although computable, a method may require the storage of all past direction
vectors unless certain conditions are met. In [16] necessary and sufficient conditions
are given for the existence of a 3-term CG method that is optimal in the B-norm,
I1" II- (B., .)1/2. (Such methods require storing only the past two direction vectors.)
In the present paper, these conditions are used to develop and organize CC methods.
In particular, we show that any CG method for Ax b is uniquely characterized by an
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A TAXONOMY FOR CONJUGATE GRADIENT METHODS 1543

hpd inner product matrix B and a left preconditioning matrix C. This characteriza-
tion is then used to classify a variety of methods. For each method we also determine
the class of matrices for which the 3-term recursion is applicable. We call this class
of matrices the domain of applicability for the given method. The resulting taxonomy
not only imposes order, but also provides insight into how still other methods may
be devised. Moreover, by exploring the domain of applicability of each method, new

applications for several known methods are revealed.
To aid in the design and classification of CG methods, we identify seven basic

CG patterns. Specifically, we identify patterns for the B and C matrices. A method
is an instance of a pattern, that is, a specific choice for B and C. The patterns form
the basis for the taxonomy presented in this paper. By examining these patterns, the
relationship between methods that seem prima facie unrelated can more readily be
seen. Moreover, once a pattern is identified, it may be used to devise new methods
and to understand known methods more fully. For example, one of our patterns leads
to a new class of methods that is based on commutativity.

This paper also considers the efficient implementation of a CG method. We call
such an implementation an algorithm; it is the sequence of arithmetic steps used to im-
plement the method. Three algorithms are examined. The first, Orthodir, is the most
general, converging to x A-lb whenever the underlying method is optimal. Two
variants, Orthomin and Orthores, are also considered. We next show how eigenvalue
estimates for CA may be computed from a tridiagonal matrix constructed from the
CG iteration parameters, generalizing the well-known connection between the CGHS
and Lanczos methods. Such estimates allow implementation of a stopping criterion
based more nearly on the true error, rather than the residual error.

Finally, a word on terminology. Historically [31], CG methods have been called
gradient methods because the residual is the gradient of the error functional 1/2 (Ae, e}
when A is hpd. In this paper, we employ the more general error functional 1/2 (Be, e},
whose gradient is Be. Another term the reader may be familiar with is polynomial
method, which has its origin in the fact that the error e is a polynomial in CA times
the initial error.

1.1. Related work. An early attempt at taxonomy is given by Hestenes in [20].
He observed that many CG methods are equivalent to CGHS on some preconditioned
problem, A2 b. Unfortunately, this approach does not reveal the full domain of
applicability of the resulting method. For example, it leads to the erroneous conclusion
that the preconditioner in PCG must be hpd. As we will show, it only needs to be
Hermitian.

The taxonomy most similar to ours is that of Joubert and Young [27]. This is
not surprising since they also base their work on [16]. However, their approach is
different than ours. In particular, they use an "auxiliary" matrix Z. (In our notation,
B ZA.) They also focus much more on normality and definiteness.

Dennis and Turner provide a taxonomy for descent methods in [12]. There the
linear system Ax b is solved by finding the minimum of a quadratic functional. The
iterates are again chosen from a nested sequence of translated subspaces, but they
are not necessarily Krylov subspaces. Since each new space is required to produce a
descent direction, convergence is guaranteed if the amount of descent can be bounded
away from zero. By requiring a descent direction at each step, however, the application
of these methods to a large class of indefinite and nonself-adjoint systems is precluded.
We explore methods for such systems in 5.4.

When B is definite, but not Hermitian, (B., .} is a definite sesquilinear form,
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1544 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

which may be used to define a one-sided orthogonality property. This is the basis for
the Orthogonal Error Methods discussed in [17]. Many of our results generalize to
OEM’s in a straightforward manner. However, the estimation of eigenvalues is more
complicated; and since (B., "/ no longer defines a norm, some optimality properties
may be lost. In the present work we examine only CG methods; OEM’s will be
addressed in a future report.

1.2. Outline. We review some basic theory in 2. The algorithm Orthodir is
discussed in 3; Orthomin and Orthores are examined in 4. In 5 we introduce our
taxonomy. We first identify and describe seven basic CG patterns ( 5.1) and show
how ten well-known methods fit into the taxonomy ( 5.2). The role of commutativity
in CG methods is considered in 5.3; the domain of applicability for each pattern is
explored in 5.4. In 6 the relationship between the CGHS and Lanczos methods is
generalized and stopping criteria are discussed. We summarize our results in 7.

2. Basic theory. In this section some basic theory of conjugate gradient meth-
ods is reviewed. It is first noted that a CG method is a gradient (or polynomial)
method [31] that minimizes the error in an inner product norm at each step. The
class of matrices for which an "economical" method exists, that is, for which only
a few previous direction vectors are needed, is then presented. Except for certain
anomalous cases, this class consists of diagonalizable matrices whose eigenvalues lie
on a line segment in the complex plane.

2.1. Gradient methods. Given an initial guess x0, a gradient method produces
a sequence of approximations to x A-1 b by

(2.1) xi+l xi + di

where di is an element of the Krylov space of dimension at most i + 1 generated by
r0 and A, V+ (r0, A). This Krylov space is defined by

Y/+l (r0, A) sp{r0, Aro, A2r0, Air0},

the space spanned by the enclosed vectors. One gradient method differs from another
only in the way d is chosen from V/+. (Symbols r0 and A will be omitted unless
necessary for clarity.)

2.2. CG methods. Let (., .} denote the usual Euclidean inner product. If B is
an hpd matrix, then (B., .} defines an inner product, and B is called an inner product
matrix. Next let ei x- xi be the error at step i; equation (2.1) gives

(2.2) e+ ei d.

If d e V/+I is chosen to minimize Ile+llB (Be+l,ei+} /2, then a conjugate
gradient method results. We denote this method by CG(B, A). Choosing d in this
way is equivalent [31] to enforcing B-orthogonality between e+l and V/+I,

(Bei+l,Z} 0 for any z E V/+,

abbreviated by ei+ -I-B V+. Since V c V+ and ei -I-B V/ (from the previous step),
we have di _kB V. Thus, di is the unique (up to scale) vector satisfying both di E V+I
and di _1_ Vi.
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A TAXONOMY FOR CONJUGATE GRADIENT METHODS 1545

2.3. A basis for V__1 To find d we first construct a B-orthogonal basis,
{pj }j=0, for V+I

k
(BApk,pjl

k 0, 1,...,i- 1(2.3) Pk+l Apk Okjpj, O’kj
j=0

(Bp,py}

where Po ro b- Axo is the initial residual [16]. The vectors {py} are called
direction vectors. By construction, pi E V+I and pi -]-S Y/. Therefore, di cipi for
some scalar ci. Equation (2.1) then becomes

(2.4) xi+ xi + aipi.

Since ei+ -[-B Y/+l, it is easy to determine ai. The relation

O--(Bei+l,Pi)- (Bei,Pi}-oi(Bpi,Pi}

gives

The computability of ci is discussed in 3.2 and 4.4. By this we mean the evaluation
of the right-hand side of (2.5), which involves the unknown error, ei.

2.4. An economical recursion. The method CG(B, A),

Xi+l xi - oiPi,

Pi+ Api E ’iJPJ
j=o

yields the solution, x A-b, in at most n steps for any nonsingular matrix A
(assuming exact arithmetic). The recursion for Pi+l appears to require storing all past
direction vectors, which is impractical for large problems. Thus, a class of matrices is
sought for which (2.3) naturally truncates to an s-term recursion:

k

j=k-s+2

Only s direction vectors are required. If s is "small," the recursion is said to be
economical and the corresponding method is called s-term CG(B, A).

To proceed further, a few definitions are needed. Let d(A) be the degree of the
minimum polynomial of A, and let d(r0, A) be the degree of the minimum polynomial
for r0 with respect to A. Next, define the B-adjoint of A to be the unique matrix A+
satisfying

(BAx, y} (Bx, A+y)

for every x and y. Note that

A+ (BAB-I) B-1A*B
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1546 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

where A* is the adjoint of A in the Euclidean inner product, namely, A* .T. The
matrix A is said to be B-normal if and only if AA+ A+A. This is true if and only
if A+ is a polynomial (of some degree) in the matrix A [16]. If U is the smallest degree
for which this is true, then r] is the normal degree of A. We say A is B-normal(s)
if A is B-normal with U _< s. Those matrices for which (2.6) is correct may now be
characterized as follows.

THEOREM 2.1. The s-term CG(B,A) method yields the exact solution of Ax b
in at most d(ro, A) steps for every xo if and only if d(A) <_ s or A is B-normal(s-2).

Proof. See [16]. [:]

Remark. A similar result holds for singular A, but we confine ourselves to non-

singular A for convenience.

If A does not satisfy the conditions of Theorem 2.1, the recursion (2.6) cannot, in
general, be used to generate B-orthogonal direction vectors. Consequently, optimality
in the B-norm is not assured, so we do not have a CG method. If the method is
employed anyway, it is called a truncated CG method ( 5.5).

2.5. B-normal(I) matrices. In [16] it is shown that if A is B-normal() for
/ > 1, then d(A) _< 72. Since matrices with at most r/2 distinct eigenvalues are of
little interest, we shall assume _< 1 in the remainder of this paper. This corresponds
to s 3. Henceforth CG(B, A) will refer to the 3-term CG method that minimizes

Ilei+lllB over V+1 (r0, A). By Theorem 2.1 this method is optimal in the B-norm for
every x0 if and only if d(A) _< 3 or A is B-normal(l). The anomalous case d(A) <_ 3
is excluded, and we instead focus our attention on B-normal(l) matrices. To better
understand CG methods, a characterization of such matrices is useful and will aid
development of the taxonomy in 5.

The matrix A is B-normal(I) if and only if A has the form [16], [27]

(2.8) A- ei (i rI )2
+G r>_0 0_<0<_2r, G+-G,

where G+ is the B-adjoint of G and i v-l. Characterization (2.8) implies that A
is the translation and rotation of a B-self-adjoint matrix (G+ G). An important
subclass arises when r 0 and 0 0. Then the matrix A is B-self-adjoint; that is,
A+ B-A*B A, which holds if and only if BA is Hermitian.

Given A we might ask if there exists an hpd B such that A is B-normal(i). The
answer [16], [27] is: A is B-normal(I) for some B if and only if A is similar to a
diagonal matrix and the convex hull of the spectrum of A is a line segment in the
complex plane. Moreover, A is B-self-adjoint for some B if and only if A is similar
to a Hermitian matrix (and so has real eigenvalues). In other words, a 3-term CG
method exists for A if and only if A is diagonalizable and has collinear eigenvalues
(or d(A) <_ 3). The matrix B may be difficult to find. In theory, the similarity
transformation to diagonal form yields a B. In practice, however, it is necessary to
search for a B for which (2.8) is satisfied. In 5 a variety of B are discussed for
various A.

In the next two sections we present algorithms that implement CG(B, A). The
matrix A is assumed to be B-normal(I).
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A TAXONOMY FOR CONJUGATE GRADIENT METHODS 1547

3. The algorithm Orthodir. Assume A is B-normal(i) for a given inner prod-
uct matrix B. Then the following algorithm, which we call Orthodir(B,A), imple-
ments CG(B, A)"

(3.1a) p0 r0

(3.15)

(3.1c) x+l x
(3.1d) r+l r aiAp

(BAp,p}
(3.1e)

(BApi,pi_)
(3.1f) ai- (Bpi-l,Pi-l}
(3.1g) pi+ Api 7iPi aipi-

where xi is the current approximation to x A-Ib, ri b- Axi is the residual, and
pi is the current direction vector.

Readers familiar with the "classical" CG algorithm of Hestenes and Stiefel may
find Orthodir to be strange. However, it is, in general, the most robust implementation
of CG(B, A). In the next section, two alternative algorithms, Orthomin and Orthores,
are presented.

3.1. Preconditioning. To solve Ax b we need not restrict ourselves to this
system. The solution x also may be found from the preconditioned problem QAP2
Qb, where Q and P are nonsingular linear transformations and P x. Although
P and Q usually represent the inverse of an incomplete factorization, they might
also represent more complicated procedures, say, a partial multigrid sweep or single
step of SSOR. Ideally, A QAP has a smaller condition number than A, but not
necessarily. For if A is arbitrary, and we wish to use a 3-term CG method, Q and P
must be chosen so that is -normal(1) for some/, even if the condition number of
A is larger than that of A. The normal equations, A*Ax A’b, exemplify this.

To derive a preconditioned algorithm consider Orthodir(/,). This iteration
converges to 2 in at most d(Qro, QAP) steps; the desired solution is x P2. The
algorithm is easily rearranged, however, to give x directly, as will now be shown.

Let , 2, , and i5 be the vectors generated by Orthodir(/, ). If e, x, r, and
p are the corresponding vectors for A, then ei P, xi Pi, r Q-l-ri, and p
PlSi. Simple algebra gives the following algorithm, which we call Odir(B, C, A):

(3.2a) P0 Cro
(Bei,Pi)(3.2b) ai (Bpi,

(3.2c) xi+l xi + oipi

(3.2d) ri+l ri oiApi

(3.2e) 7i=

These names, Orthodir, Orthomin, and Orthores, have been used by Young et al. [23], [27],
[35]. For brevity we often refer to them as Odir, Omin, and Ores, respectively.
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1548 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

(3.2f)

(3.2g)

(BCApi,ps_I)
ai Bps_1, Pi-

Pi+l CApi sPi ospi-1

where B p-.[p-1 and C PQ. (Note that C is nonsingular.) This is the
same algorithm as Orthodir(B, CA). Therefore, only left preconditioning need be
considered: Right preconditioning may be effected by incorporating it into the left
preconditioner and inner product. This result has two benefits. First, the vectors
es, and Ps are unscaled, which simplifies analysis. Second, it simplifies taxonomy. For
once the matrices B, C, and A are specified, the CG method is determined; we call
this method CG(B, C, A). Moreover, any 3-term CG method may be implemented by
Odir(B, C, A) for some B, C, and A. The following result is obtained by replacing A
with CA in Theorem 2.1.

THEOREM 3.1. The s-term CG(B,C,A) method yields the exact solution of
Ax b in at most d(Cro, CA) steps for every xo if and only if d(CA) < s or CA is
B-normal (s 2).

One final remark: The conventional way to describe the preconditioned conjugate
gradient method is to state that it is the classical CG method of Hestenes and Stiefel,
which we call CGHS, applied to the system C1/2AC1/2C-1/2x C1/2b. Algebraic
manipulations yield the algorithm above when B A. This approach is lacking in two
respects: (1) It requires that both C and A be hpd; and (2) it requires minimization
of the unscaled error in the B A norm. Now consider the problem QAPP-lx Qb.
CGHS on this system is equivalent to CG(B, C, A), where C PQ and B P-*QA.
Clearly, B is hpd if and only if QAP is hpd. This more general approach is still
lacking in that it requires that BCA be hpd. This requirement is much stronger than
necessary; the theory in 2 requires only that CA be B-normal(I).

3.2. Computability. Since B is hpd, as, 7s, and as are defined. However, the
numerator of as involves the unknown quantity es, the error at step i. Thus, B and A
must be chosen so that ci is computable, that is, expressed in terms of known entities.
In general, we regard rs as the basic known quantity; that is, we assume that A and
b are the basic irreducible entities. It will be shown in 4.4 that as is computable
whenever C*Bes is computable.

3.3. Properties of Odir. Odir(B, C, A) is optimal in the B-norm if and only if
either CA is B-normal(l) or d(CA)

_
3. The direction vectors are still B-orthogonal,

but now IleS+lllB is minimized over xo + Vi+i(Cro, CA). Thus, the preconditioning
matrix C affects only the Krylov space and not the error norm. We also have the
following result.

THEOREM 3.2. If B is hpd and CA is B-normal(I), then the vectors generated
by Odir(B, C, A) satisfy the following orthogonality relations for < d(so, CA)- 1

(a) (Be,pj) O, j < i,
(b) <Bps,py> =0, j #i,
(c) o, j < i,

where sy Cry is the jth preconditioned residual.
Proof. Parts (a) and (b) are intrinsic properties of the method; see 2. For (c)

consider sj E sp{so,...,sj} C sp{po,..’,pj}. Thus, sy k=O-kpk and the result
follows from (b). V1

COROLLARY 3.3. Under the hypotheses of Theorem 3.2:

(d) <BCAps,py>=O, j#i-l,i,i+l,
(e) aj e2iO(Bpj,pj)/(Bpj_,Pj_l}

D
ow

nl
oa

de
d 

03
/0

8/
17

 to
 1

30
.2

02
.2

32
.2

25
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



A TAXONOMY FOR CONJUGATE GRADIENT METHODS 1549

where is as given in (2.8).
Proof. The first result follows from the 3-term recursion (3.2g) for the Pi and

Theorem 3.25. As in (2.8), if CA is B-normal(I), then CA e(iI + G) for some
r >_ 0, 0 <_ 0 <_ 2, and G G+. Taking the B-adjoint of CA and rearranging terms
yields (CA)+ e-2ioCA- ire-iI. Therefore, the numerator of aj is

<BCApj, pj_I> <Bpj, (CA)+py_I> e2iO <Bpy, CApj_I> zr

Result (e) now follows from (3.2g) and Theorem 3.2b. v
Remark. e2 1 and r 0 when CA is B-self-adjoint.
Theorem 3.2 lists the basic orthogonality relations of CG(B, C, A). From 2.2 it

follows that e+l is B-orthogonal to V/+I. By Theorem 3.2c e+l is also B-orthogonal
to the space spanned by the preconditioned residuals. This distinction, between the
spaces spanned by {pj} and {sj}, is an important one. For although sp{s0,.-., s}
V+I, equality need not hold. To see why, suppose some aj 0. Then the space
spanned by the residuals is unchanged from step j to step j + 1. Consequently,
cannot be used to generate the new Krylov space. However, if it can be guaranteed
that aj 0 for every j, then a more economical form of the algorithm exists. This is
the topic of the next section.

4. Orthomin and Orthores. When the preconditioned residuals {sj }j=0 span
V+I, a more efficient implementation of CG(B, C,A) is possible. The resulting algo-
rithm is Omin(B, C, A):

This algorithm differs from Odir in that it uses 8i+ to compute i+1, that is, to
generate V/+2. This is possible if and only if &y 0. If some &y 0, the iteration is
trapped in the current Krylov space: xj+k xj for k > 0. Odir avoids this problem
by using a 3-term recursion for pj+l, but at greater expense. (Although aj 0 is
possible in Odir, the 3-term recursion (3.2g) always forces the iteration into the next
Krylov space.)

Note that Omin(A, I, A) is the classical algorithm of Hestenes and Stiefel when
A is hpd.

4.1. Properties of Omin. Omin is more efficient than Odir, requiring less work
per step and less storage. If CA is B-normal(I) and each &y is nonzero, then Omin
is equivalent to Odir: given the same x0, both algorithms produce the same se-
quence of iterates, which follows because both algorithms implement the same method,
CG(B, C, A). Equations (3.2c) and (4.1c) imply that ap &iS. Thus, the orthogo-
nality relations listed in Theorem 3.2 hold for Omin with Pi replaced by iSi (provided
no &y 0). In addition, equation (4.1g) admits the following useful results.
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1550 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

COROLLARY 4.1. Assume the hypotheses of Theorem 3.2. Then

(f)
(g)

If, in addition, BCA is definite, then

(h) & 0,
(i) /j e2iiBej+l,Sj+l>/iBej,sj>,

where 0 is as in (2.8).
Proof. Parts (f) and (g) follow from (4.1g) and Theorem 3.2. For (h) notice that

<Be,, ,> <Be,, s,> <Be,, CAe,> <e,, BCAei>

since B is hpd and BCA is definite.
(4.1f):

For part (i) consider the numerator of j in

<BCAey+I,y> <Bey+l, (CA)+y> e2i<Bej+l, CAj>

from (CA)+ e-2iCA-ire-iI and Theorem 3.2a. Since &j 0, (4.1d) and (4.1e)
yield CADj &-l(sy Sy+l). Combining this with Theorem 3.2c, equation (4.1b),
and Corollary 4.1f gives (i). B

Remark. j is real when CA is B-self-adjoint or B-skew-adjoint.
When BCA is definite, Corollary 4.1h guarantees each &i - 0. Thus, the precon-

ditioned residuals span V+I, and Omin will converge. On the other hand, if BCA is

indefinite, there exists an x0 such that d0 0. This yields the following.
THEOREM 4.2. Omin(B, C, A) converges to x A-lb for every xo if and only if

BCA is definite and either CA is B-normal(i) or d(CA) < 2.

Proof. See the discussion above and [27]. [

If CA is B-self-adjoint and BCA is definite, then BCA is Hermitian definite. In
this case, we may assume BCA is hpd without loss of generality.

Since Odir and Omin are equivalent when BCA is definite, the former may be
derived from the latter. A derivation will now be given for completeness. The 3-term
recursion for the Pi of Odir is obtained as follows from the expression for the/3i of
Omin:

(4.2) i--1 8i+1 - ii 8i &iCAi -- ii-aiCAi + (1 + i)i i-1i-1.

Let ri l-[k=0 (--&k) and Pi+l 1/7rii+l. Then

Pi+l-CApi- (l+i)pi- ( i--1 )Pi_lO OliOi_l

which is the recursion of Odir. We may verify

1 +

_
(4.3) /i--

&i
and ffi=ii-1

Moreover, iPi ii, which shows more clearly that the two algorithms generate
the same sequence of iterates, {xi+ }.

Likewise, the Pi of Omin may be derived from the Pi of Odir by multiplying (3.2d)
by C, substituting this into (3.2g), and then rearranging terms.
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A TAXONOMY FOR CONJUGATE GRADIENT METHODS 1551

4.2. The algorithm Orthores. A 3-term recursion for the iterates (and hence
the residuals) gives a third algorithm, which we call Ores(B, C, A):

(4.4b)

(4.4c)

(4.4d)
(4.4e)
(4.4f)

80 CrO,

#’ (Bs,,s,}(Be,_l,s_l}-

This algorithm, similar to the one given in Table 3 of [23], is algebraically equivalent
to Omin, converging if and only if Omin converges. If Omin determines &j 0, then
Ores determines #j 0, and conversely. Both algorithms compute Xj+l xj, but
make no further progress toward x A-b: Omin is unable to generate V+2and
Ores is unable to compute py+l.

Ores may be derived from Omin by substituting &jj xy+ x into equation
(4.1g) to obtain

We may verify

Xi+l--&isiq-(1- &ii-1)ozi-1- xi-- (&ii-1)___&i_l

&i&i--1 &ifli--1
#= and p=14-

OZi-- q- &ifli-- &i--

Note that #i simplifies to

Xi--1.

(Bei, si}

when CA is B-self-adjoint or B-skew-adjoint.

4.3. Related work. Joubert and Young [27] have examined Omin and Ores in

detail, modifying the proof in [16] to obtain necessary and sufficient conditions for
convergence. Their conditions are equivalent to those given above. (Note that the
anomalous case for Omin and Ores is d(A) <_ 2.) Young and Jea [35] have considered
the use of Omin and Ores on matrices that are not B-normal(l). Despite the loss of
optimality, these truncated algorithms are useful in many applications. Also see 5.5.

4.4. Practical considerations. When BCA is definite, Omin and Ores are

algebraically equivalent to Odir: All three converge in at most d(Cro, CA) steps,
which follows because each algorithm implements the same method. Since Omin
requires one less vector update and one less inner product per step, as well as less
storage, than Odir, Omin should be used whenever possible. Also, since Ores is more
expensive than Omin, yet no more general, we will ignore it in the remainder of the
paper.

If BCA is indefinite, Omin may still be used, but the previous direction vector,
15i-1, should be stored. Then, if &i 0 (or is nearly zero), control can switch to the
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1552 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

3-term recursion of Odir to get P+I. This hybrid algorithm has been studied in [6]
and [7] for B A2.

Regardless of the algorithm, matrix-vector multiplications usually require the
most expense. Both Odir and Omin seem to require three multiplications, one each
for B, C, and A. However, if the inner product matrix B is chosen appropriately, and
the computations arranged correctly, this multiplication can be avoided. This is true
for the methods we will discuss in 5.

Many CG methods require both CAp and Cr+l. Since Cr+ Cr -CAp,
the preconditioned residual is available at the cost of a vector update. Therefore only
one C multiplication per step is necessary. Also note that r is not always required,
and so need not be computed. However, in several methods we need the auxiliary
vector q C-lp, which may be computed recursively by

(4.5) q+ Ap 7q aq_

with q0 r0 and q_l 0.
Equation (4.5) yields variants of Odir and Omin that are computable whenever

C*Bei is computable. In addition, when BCA is definite, results 4.1f and 4.1g allow
several expressions for &i. The appropriate choice depends on B, C, and A. Finally,
notice that Corollaries 3.3e and 4.1i may be used to rewrite ai and/i in terms of pre-
viously computed inner products. These are significant savings in any implementation
of Odir and Omin.

5. A taxonomy for CG methods. Any CG method is characterized by exactly
three matrices: an hpd inner product matrix B, a left preconditioning matrix C, and
the system matrix A. This characterization is the foundation for our taxonomy, which
we develop in this section. We use this taxonomy to classify a variety of methods, to
explore their domains of applicability, and to suggest several new methods based on
commutativity.

To better understand the taxonomy below, consider how a new 3-term CG method
might be devised: Given the nonsingular system Ax b, an hpd B and nonsingular
C must be chosen so that

(i) ai is computable
(ii) CA is B-normM(1).

The computability of ai has been mentioned in 3.2 and 4.4; it is essential for
a practical algorithm. Condition (ii) guarantees that each iterate of CG(B, C,A) is
optimal in the B-norm over the current Krylov space. Ideally, C approximates A-,
thus improving convergence. However, this is not always the case, as the normal
equations illustrate. Finally, when choosing B and C, the expense of the resulting
algorithm should be considered.

Our taxonomy is presented in four parts. In 5.1 we introduce seven basic CG
patterns. Particular methods are obtained by specifying the matrices that define a
pattern. Thus, a CG pattern is simply a generalized CG method. In 5.2 we discuss
ten known methods and show that each is an instance of one or more of these patterns.
In 5.3 we examine the role of commutativity in CG methods. In particular, we
examine commutative preconditioners, that is, preconditioning matrices C for which
CA AC. The simplest commutative preconditioner is a polynomial in the matrix
A. Two other commutativity properties are also considered.

In 5.1-5.3 we assume that CA is B-self-adjoint, an important special case of
B-normality. In 5.4 we describe the full domain of applicability for each of the
patterns in 5.1. (Recall that the domain of applicability for a method is the class of
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A TAXONOMY FOR CONJUGATE GRADIENT METHODS 1553

matrices for which that method is guaranteed to converge to x A-lb for any x0.)
To determine this domain we state necessary and sufficient conditions under which
CA is B-normal(I) for the given pattern. This study not only suggests several new
CG methods, but also reveals that several existing methods are applicable to a larger
class of matrices than previously known.

5.1. Basic CG patterns. The premise of this paper is that every CG method
is an instance of CG(B, C, A) for some B, C, and A. A particular method for solving
Ax b is obtained by specifying a choice for B and C. It is useful, however, to have
a level of abstraction between the extremes of CG(B, C, A) and particular methods.
Thus, in this section, we introduce CG patterns, and these constitute our taxonomy.
A pattern gives us a way of obtaining a computable 3-term CG method by relating
B, C, and A so that CA is B-normal(i). For example, in the CG method of Hestenes
and Stiefel, the pattern is to take the inner product matrix to be the system matrix.
By identifying various patterns, we can more readily see the relationship between
methods that seem prima facie unrelated. Moreover, once a pattern is identified, it
may be used to devise new methods. We remark that the list of patterns below is
by no means complete, nor are they mutually exclusive. We have attempted only to
identify important and useful patterns.

In Table 5.1 we list seven CG patterns; they may be distinguished by their entries
in the B and CA columns. The first four patterns, P1-P4, are motivated by four well-
known methods (see below), and may be viewed as generalizations of these methods.
In each of these patterns we assume B has the form ZA, where Z is some computable
matrix. By this we mean that the matrix-vector product w Zv is computable
for any known vector v. Examples of computable matrices include A, A*, C, and
I; the matrix A-1 is an example of an uncomputable matrix. Note that B ZA
guarantees a computable method ( 3.2). Of course, it is not necessary that B ZA
for a computable Z. As remarked in 4.4, a method is computable if C*Bei is
computable. This observation is used in patterns P5-P7.

In the column labeled "Odir Restrictions" we list sufficient conditions under which
B is hpd and BCA is Hermitian. If these conditions are satisfied, Odir(B, C, A) will
converge. If the conditions listed under "Omin Restrictions" are met, B and BCA are
both hpd, and so Omin(B, C, A) will converge. In either case the matrix CA is B-self-
adjoint. Since these matrices commonly occur in practice and are easy to characterize,
we deal with them first. We consider the more general class of B-normal(I) matrices in

5.4, where the full domain of applicability for each pattern is discussed. Computable
expressions for ai and & are also given in Table 5.1. To obtain efficient algorithms, in
which only one C-matvec and one A-matvec are required per step, it may be necessary
to use the results of Theorem 3.2, Corollary 4.1, and 4.4. Subscripts and hats are
omitted from the a columns for convenience; temporary vectors s Cr and q C-lp
are used for brevity.

We now discuss each of the CG patterns:
GCGHS (Generalized CGHS). This pattern generalizes the classical conjugate gradi-
ent method of Hestenes and Stiefel, which we call CGHS. It is distinguished by its use
of the preconditioned system matrix for the inner product matrix, that is, B CA.
Since B must be hpd, this severely limits the choices for C.
GCR (Generalized Conjugate Residuals). This pattern generalizes the conjugate
residual method. Here B (CA)*(CA), which is hpd for any nonsingular CA. Al-
though CA is B-self-adjoint if and only if CA is Hermitian, this method has important
applications when CA is B-normal(I), as will be shown in 5.4. For this reason we
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1554 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

TABLE 5.1
Seven CG patterns.

Pattern Name B

P1 GCGHS CA

P2 GCR (CA)* (CA)

P3 GPCG EA

P4 GPCR A*EA

CA

CA

CA

DEA

CA

Orthodir

Restrictions

CA hpd

CA herm

EA hpd
D herm

E hpd
EAC herm

<Er, Ap>
(EAp, Ap>

Orthomin

Restrictions

CA hpd

CA hpd

EA hpd
D hpd

E hpd
EAC hpd

(CAp, p>
<s, CAs}

<CA,CA>
(Er, s>
<EAp, p>
(Er, As)
<EAp, Ap>

A*DA D herm (r, Dq> D hpd

P6 GCGIB B

P7 GCGCB B

B-1A.DA

A*DA

B hpd
D herm

B hpd
BD herm
AB BA

<Ap, Dq>

Br, Dq>
<BAp, Dq>

B hpd
D hpd

B hpd
BD hpd
AB BA

(r, Dr>
<DAp, q>

<Br, Dq>
<BAp, Dq>

use the notation (CA)*. Notice that this pattern is applicable to a larger class of
matrices than GCGHS, but minimizes in a different norm.

GPCG (Generalized Preconditioned CG). This pattern is a generalization of the
preconditioned conjugate gradient method. Here we assume B EA and C DE,
where D and E are computable matrices. By choosing C DE it is easy to see that
BCA is Hermitian whenever D is Hermitian. Note that GCGHS is a special case of
GPCG.
GPCR (Generalized Preconditioned CR). This pattern generalizes the preconditioned
conjugate residual method by using B A*EA, where E is a computable hpd matrix.
When E C, the method PCR results. This pattern is also important for the
commutative preconditioned methods considered in 5.3. The notation A* is again
used in anticipation of applications for non-Hermitian A; see 5.4. Note that GCR
is a special case of GPCR.
GCGE (Generalized CG with Error minimization). This method is a generalization
of Craig’s method for the normal equations ( 5.2). Unlike the previous patterns,
this pattern does not assume B ZA for some computable Z. Instead, the error
is minimized in the B I norm. To obtain a computable method, however, we
must assume C A*D for some computable matrix D. By using a commutative
preconditioner it is possible to minimize in the /-norm without resorting to some
variant of the normal equations; see 5.3. Also observe that this pattern is the most
general possible if we wish to use B I.
GCGIB (Generalized CG with Invertible B). This pattern assumes neither B
ZA nor B I. Nevertheless, ai is computable because (Bei, Cq> (r,Dq> is
computable; recall equation (4.5). A similar result holds for &. Since C must be
computable, B-1 must be computable, and so the choices for B are limited. Notice,
however, that B need not be computable.
GCGCB (Generalized CG with Commutative B). This pattern is similar to GCGIB,
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TABLE 5.2
Ten CG methods.

Method (Pn) B CA Odir Restrictions Omin Restrictions

CGHS (P1) A A A hpd A hpd

CR (P2) A2 A A herm A hpd

PCG (P3)
PCR (P4) ACA

CGNR (P1) A*A

CGNE (P5) I

PCGNS (P1) (M-1A)*M-1A
PCGNE (P5) I

PCGNR (P3) A*A

PCGNM (P6) M*M

CA A hpd, C herm A hpd, C hpd

CA A herm, C hpd A hpd, C hpd

A*A none none

A*A none none

(M-1A) M-1A none none

(M-1A)*M-1A none none

(M’M)-1A*A none none

(M*M)-IA*A none none

but does not use B-1 in C. Instead, we assume BA AB. This guarantees that the
pattern is computable because C*Bei D*ABei D*BAei D*Bri is computable.
It is also easy to show that CA is B-self-adjoint if and only if D is B-self-adjoint,
that is, if and only if BD is Hermitian. This is most readily achieved when B and
D are real polynomials in the matrix A; see 5.3. This pattern has not appeared in
the literature, except for the special case B I, in which case GCGCB and GCGIB
both reduce to GCGE.

In this section we have identified seven basic CG patterns. By specifying the
matrices in these patterns, particular methods result. Although the patterns do not
encompass every possible CG method, they do suggest how new methods might be
designed. Moreover, these patterns make it possible to see more clearly the relation-
ship between various CG methods. In the next subsection we show how ten known
CG methods fit into the above taxonomy. In particular, we show that each method is
an instance of a pattern. Of course, since the patterns in Table 5.1 are not mutually
exclusive, some methods are instances of more than one pattern.

5.2. Ten CG methods. In this section we show how ten well-known CG meth-
ods fit into our taxonomy. These methods are summarized in Table 5.2, where we list
the inner product matrix B and preconditioned system matrix CA. We also list suffi-
cient conditions for the convergence of the Odir and Omin algorithms. In particular,
for Odir, we give sufficient conditions for B to be hpd and for BCA to be Hermitian.
For Omin, we give sufficient conditions for both B and BCA to be hpd. The primary
pattern of which the method is an instance is given in parentheses; refer to Table 5.1.

CGHS. The best-known CG method is the original conjugate gradient method of
Hestenes and Stiefel [21], which we call CGHS. Here C I and B A, so at each
step Ilei[IA is minimized over xo + Vi(ro, A). For B A to define an inner product
norm, A must be hpd, a well-known requirement. Since BCA A2 is hpd, Omin
may be used, which gives the classical CG algorithm. This method is an instance of
GCGHS (C I).
CR. The conjugate residual method [21], which we call CR, may be used for both
Hermitian positive definite and indefinite matrices A. This is so because B A2 is
hpd for any nonsingular Hermitian A. Since (Be, e} (r, r}, the /-norm of the
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1556 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

residual is minimized at each step, and for this reason CR is often called the minimum
residual method. Note that BCA A3 is hpd only if A is hpd, and so Odir should
be used for indefinite A. This method is an instance of pattern GCR (C I).
PCG. Closely related to CGHS is the well-known preconditioned CG method, which
we call PCG. This method, described in [10] and [28], also minimizes in the B n
norm, but has preconditioned system matrix CA. The matrix C is often expressed
as C M-l, where M-1 is an approximation to A-1. Although M commonly
represents an incomplete LU factorization of A, it may be any matrix splitting, for
example, Jacobi, Gauss-Seidel, SSOR, or ADI. In its usual Omin formulation, PCG
requires an hpd M, and is then equivalent to CGHS on ft. M-1/2AM-1/2. However,
if Odir is used, M may be Hermitian indefinite. This method is an instance of GPCG
(E=I,D=C).
PCR. The fourth method is preconditioned conjugate residuals, or PCR [6]. Here
B ACA, and so the preconditioner C must be hpd, even though A may be indefinite.
In contrast, PCG requires an hpd A but allows C to be indefinite. As with CR, Omin
should be used only if A is hpd. This method is an instance of GPCR (E C).
Normal equations. When A is not B-normal(l), Odir or Omin may still be em-
ployed, but only if applied to the normal equations.2 Of course, a preconditioning
also may be used. By arranging the normal equations in different ways, different
algorithms result; six are listed in Table 5.2 and described below. See also [15].
CGNR. This method, which is an instance of pattern GCGHS (C A*), is equivalent
to CGHS on A*Ax A*b. Consequently, it minimizes the/-norm of the residual at
each step. It differs from CR in that its Krylov space is generated by A*A rather
than A. Note that CGNR is also an instance of patterns P3 and P4.

CGNE. This method, which is often called Craig’s method [11], is equivalent to
CGHS on AA*y b. It differs from CGNR in that it minimizes the /-norm of the
error at each step. Again the Krylov space is generated by A*A. This method is an
instance of pattern GCGE (D I).
PCGNS and PCGNE. These methods result from applying CGNR and CGNE
to M-1A, where M-1 is an inner preconditioning. The total preconditioning is
C (M-1A)*M-1. Note that PCGNS minimizes the/-norm of the preconditioned
residual whereas PCGNE minimizes the/-norm of the error. We consider PCGNS to
be primarily an instance of pattern GCGHS (C (M-1A)*M-1), but it is also an
instance of P3 and P4. PCGNE is an instance GCGE (D (MM*)-I).
PCGNR and PCGNM. These methods are equivalent to CGNR and CGNE on
AM-1. Here the total preconditioning is C (M*M)-IA*. This choice for C is
motivated by the assumption that if M-1 is a good preconditioning for A, then
(M’M)-1 is a good preconditioning for A*A. Since PCGNR also results from PCG
by replacing C with (M’M)-1 and A with A’A, we consider it to be an instance
of pattern GPCG (E A*, D (M’M)-1). However, it is also an instance of P4.
PCGNM is an instance of GCGIB (B M’M, D I).

In this section we have examined ten known CG methods and shown how each
fits into the taxonomy of 5.1. In particular, we have shown that each is an instance
of one or more CG pattern. Once the pattern was recognized, it was easy to obtain
sufficient conditions for the convergence of Odir and Omin from Table 5.1. We have

2 This taxonomy considers only 3-term CG methods. Truncated and restarted CG methods, as
well as Orthogonal Error Methods, are briefly discussed in 5.5.
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A TAXONOMY FOR CONJUGATE GRADIENT METHODS 1557

illustrated each of the patterns of 5.1 except GCGCB. We will furnish an example
of it in the next section where we discuss the role of commutativity in CG methods.

5.3. Commutativity and CG methods. When certain commutativity prop-
erties among the matrices B, C, and A hold, it is often easier to satisfy the sufficient
conditions listed in Table 5.1. For example, suppose C and A commute, a case we
call commutative preconditioning. Then CA is Hermitian (hpd) whenever C and A
are Hermitian (hpd). This makes practicable several CG methods based on GCGHS,
GCR, and GPCR. Methods based on other commutativity properties are also possible;
see Table 5.3 below.

Before discussing these methods, let us consider how a commutative precondi-
tioner C might be found for a B-normal matrix A. First observe that if C is also
B-normal and commutes with A, then CA is B-normal, and so an optimal CG method
exists for CA. For the method to be economical, however, CA must have normal de-
gree at most 1. This requirement limits the choice of C because the normal degree of
CA depends on C. Nevertheless, there are at least two important special cases:

(1) Suppose C C(A) is an analytic function in a region containing the spectrum
of A. Then C(A) is B-normal and commutes with A. Moreover, if C is chosen so that
for each Ai in the spectrum of A, C(Ai)Ai lies on a straight line in the complex plane,
then C(A)A is B-normal(l). Although finding such a C is difficult in general, it is
possible: If A is B-self-adjoint and C(/k) is real valued on the real line, then C(A)A is
B-self-adjoint (and so has real eigenvalues). For example, let C be a real polynomial
in/k. This is polynomial preconditioning, for which several CG methods are possible
(see below). The importance of polynomial preconditioning for vector machines has
been demonstrated in [2], [4], [13], [24], [25]. On some parallel machines, where inner
products are more costly than matrix-vector multiplications, the potential advantages
are even greater [5], [29].

(2) Let A be Hermitian and consider the ADI-like splitting, A H+ V. It yields
the preconditioning matrix

C (H + I)-I(V + I)-
where and u are ADI parameters; see, e.g., [8]. If H and V commute, then C is
Hermitian and commutes with A. Therefore, CA is Hermitian. If H and V are also
hpd, and 7, u -> 0, then CA is hpd.

Methods for commuting C and A. Suppose C and A are Hermitian and com-
mute. Then CA is Hermitian and pattern GCR is applicable; it minimizes the/-norm
of the preconditioned residual. The method PCRI, which is an instance of pattern
GPCR (E I), may also be used. This method is similar to GCR, but minimizes
the/-norm of the residual at each step.

Recall that GCGHS is applicable whenever CA is hpd. Since C and A commute,
this is satisfied whenever C and A are hpd. Suppose, however, that A is Hermitian
indefinite. Then GCGHS is applicable if and only if C is such that CA is hpd. Finding
such a C is possible by choosing C to be, for example, a polynomial in A. If C is a
good preconditioning for A, CA is an approximation to the identity matrix, and so
GCGHS approximately minimizes the/-norm of the error at each step.

Other commutativity properties. So far we have considered only commutative
preconditioning. We now discuss two related commutativity properties and some
methods that depend on them. These methods are listed in Table 5.3. As in Table 5.2,
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1558 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

TABLE 5.3
Commutativity in CG methods.

Method (Pn) B CA Odir Restrictions Omin Restrictions

PPCR (P4) A*F2A A*FA F herm, FA AF F hpd, FA AF

CGCB (PT) F A*FA F hpd, FA AF F hpd, FA AF

PPCGM (P4) A*M-1A S(M-IA)M-1A M hpd M hpd
AS(M-A) herm AS(M-A) hpd

PPCGSM (P3) S(AM-)A S(M-A)M-1A M herm M hpd
S(AM-I)A hpd S(AM-)A hpd

M hpd, A hermPPCGIB (P6) M M-1AF(M-1A)M-A M hpd, A herm F(M-A)M- hpd

sufficient conditions are given for the convergence of the Odir and Omin algorithms. If
these conditions are satisfied, then so are the sufficient conditions listed in Table 5.1.

In the first two methods we assume C A’F, where F is Hermitian and commutes
with A. These assumptions may seem unusual, but they are easily satisfied when A
is Hermitian and C is a polynomial in A. Here C()/k F(/)2, and so C() has
a double root at the origin. This leads to several interesting CG methods [2]. More
generally, the assumptions are satisfied when A is/-normal (with possibly complex
eigenvalues) and F(A) is real-valued on the spectrum of A. Although our emphasis is
on Hermitian A, A* is used for greater generality. Note that C and A commute when
A is/-normal, that is, when A*A AA*.

PPCR. This method is an instance of GPCR (E F2, C A’F). Note that EAC
is Hermitian whenever FA AF. If A is Hermitian, then so is C, in which case the
method is biased toward the small eigenvalues of A2.
CGCB. This new method, which is an instance of GCGCB (B-D-F), exploits the
commutativity of A and F to obtain computability. Specifically, C*Bei is computable
because C*Bei FAFei F2Aei is computable. If C is a good approximation to A,
then CA A*FA is an approximation to I, and so F is an approximation to (AA*) -1.
Thus, this method is biased toward the small singular values of A. Note that Omin
is always applicable because F must be hpd to define a norm.

In addition to PPCR and CGCB, two other methods are practicable when C
A*F. Although these methods do not require the commutativity of A and F, we
mention them here to emphasize their use in polynomial preconditioning for Hermitian
A. The first method is GCGE with D F(A), which is Hermitian because A is
Hermitian. This method allows us to minimize the Euclidean norm of the error
without resorting to some form of the normal equations (recall CGNE). The second
method is PCGA, which results from pattern GPCG (E F, D A). Here F must
be chosen so that FA is hpd. Since B C is an approximation to A-1, PCGA
gives greater weight to the small eigenvalues of A. PCG, on the other hand, is biased
toward the large eigenvalues of A.

In the last three methods of Table 5.3, A is first preconditioned by some M-1, and
then . M-1A is preconditioned by a polynomial in . The total preconditioning
for A is

C S(M-1A)M-1 M-1S(AM-1)
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A TAXONOMY FOR CONJUGATE GRADIENT METHODS 1559

where S(A) is the polynomial preconditioner for A. Clearly, S(A) and A commute,
which is the commutativity property employed here. Note that C and A commute
when M-1A AM-. Also note that C is Hermitian whenever A and M are Hermi-
tian. Thus, if A is hpd, the method PCG may be used, an observation first made in

[1]. If C is chosen so that CA is Hermitian (hpd), then GCR (GCGHS) is applicable.
Several other methods are also possible, three of which are given in Table 5.3.

PPCGM. This method is an instance of GPCR (E M-1, C S(M-A)M-1),
and it is applicable whenever M is hpd and AS(M-A) is Hermitian. The latter is
true whenever A is Hermitian.

PPCGSM. This method is an instance of GPCG (D M-, E S(AM-1)). Since
B S(AM-1)A-- AS(M-1A) must be hpd, the polynomial S must be chosen more
carefully than in PPCGM. On the other hand, M only needs to be Hermitian.

PPCGIB. Analogous to our earlier assumption, suppose S(A) F(/k)/k. Then a
method based on GCGIB is possible. In particular, let B M and D F(M-A)M-.
For computability we require that A be Hermitian, which implies that D is Hermitian.
Note that M need not be computable.

5.4. CG methods for nonself-adjoint systems. In the tables above, suffi-
cient conditions were given for the preconditioned system matrix CA to be B-self-
adjoint. A variety of methods, that is, instances of patterns, were examined. In this
section we explore the full domain of applicability for each pattern listed in Table 5.1.
To do this we give necessary and sufficient conditions for CA to be B-normal(i), the
most general class of matrices for which a 3-term CG method exists. Of course, these
conditions also apply to the methods based on these patterns.

The domain of applicability for pattern P1 (GCGHS) has already been fully
explored; the requirement that CA be hpd is inviolable. The domains of applicability
for patterns P3, P5, P6, and P7 are slightly larger than indicated in Table 5.1, but not
significantly so. Only in patterns P2 (GCR) and P4 (GPCR) are the domains much
larger than given in Table 5.1. Moreover, the method PCR (an instance of GPCR)
is the only method presented in this paper that is applicable to any definite matrix
without resorting to some form of the normal equations.

Before presenting Table 5.4 and discussing each pattern, we first prove the fol-
lowing theorem.

THEOREM 5.1. Let B be hpd. Then CA is B-normal(i) if and only if
(i) eBCA is Herrnitian for some O; or
(ii) 2B- 7BCA + (TBCA)* for some (possibly complex) 7.

Proof. Recall that CA is B-normal(I) if and only if CA e (i I + G) for some
r _> 0, 0 _< 0 _< 27r, and G+ G. This yields (CA)+ e-iCA- ire-ioI. Thus, CA
is B-normal(l) if and only if irI e-CA- (e-CA)+. Suppose first that r 0.
Then (e-iCA)+ e-iCA. In other words, CA is only a rotation away from being
B-self-adjoint. Note that this is true if and only if (e-iBCA) e-iBCA. Next
suppose that r = 0. Then 2I 7CA + (TCA)+ where /= -ie-i. This is true if
and only if 2B 7BCA + (TBCA)*. [3

In Table 5.4 we list for each CG pattern necessary and sufficient conditions for
the use of Odir. These conditions follow from Theorem 5.1 and the requirement that
B be hpd. Necessary and sufficient conditions for use of the cheaper Omin algorithm

I(G+G*are also given. We denote the Hermitian part of G by 7-/(G) 7 in the table
and text below.
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1560 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

TABLE 5.4
(a+a*).Domains of applicability for the seven CG patterns; 7-t(G)

P1 GCGHS

P2 GCR

P3 GPCG

P4 GPCR

PCR

CA

(CA)* (CA)

EA

A*EA

A’CA

CA

CA

CA

DEA

CA

CA

Odir Restrictions

CA hpd

CA/-normal(l)

EA hpd
eD herm or (EA)-I= 7-t(’D)

E hpd
eiEAC herm or 2E 7"I("/EAC)

C hpd
eiA herm or C-1 7-l(/A)

Omin Restrictions

CA hpd

CA/-normal(l)
CA definite

Odir restrictions
and

D definite
Odir restrictions

and
EAC definite
Odir restrictions

and
A definite

A*DA eiD herm or I A*7-l(/D)A
Odir restrictions

and
D definite

P6 GCGIB

P7 GCGCB

B-1A*DA

A*DA

B hpd
eiD herm or B A*7"t(TD)A

B hpd
AB= BA

eiBD herm or B A*7-t(/BD)A

Odir restrictions
and

D definite

Odir restrictions
and

BD definite

GCGHS. Since B CA must be hpd to define a norm, CA is necessarily B-
normal(i). In fact, CA is B-self-adjoint. Thus the domain of applicability for GCGHS
is the set of all CA such that CA is hpd.

GCR. This method is applicable if and only if CA is (CA)*(CA)-normal(1), which
is true if and only if CA is /-normal(l). In other words, CA ei(iI + G) for
some r_> 0, 0 _< 0 _< 2r, and Hermitian G. For example, suppose C I. Matrices
of the form A #I + R, where # is complex and R is real Hermitian (i.e., real
symmetric), arise in electromagnetics. Matrices of the form A #I + S, it real and
S skew-Hermitian (S* -S), arise in quantum chromodynamics.

GPCG. As in Table 5.1, B- EA must be hpd. For B-normality(l) we require that
either eiD is Hermitian for some 0 or that (EA) -1 7-/(7D) for some 7. The first
condition requires that D be essentially Hermitian; the second condition is obscure
and appears difficult to satisfy. Thus, this pattern benefits little from considering
B-normal(I) instead of B-self-adjoint matrices.

We remark that the GCW method of Concus and Golub [9] and Widlund [34] is
an instance of this pattern with E I and C-1 T/(A). However, this choice of E
does not yield an hpd B unless A is itself hpd. Therefore, GCW is not a CG method,
but instead an Orthogonal Error Method; see also [14] and [17]. However, if A is
real and we consider the odd iterates of GCW, the resulting method is an instance of
GCGIB [19]. See below.

GPCR. As in Table 5.1, E must be hpd. This pattern is applicable if and only if CA
is A*EA-normal(1), which is true if and only if AC is E-normal(i). Thus, by Theorem
5.1, we require that either eiEAC is Hermitian for some 0 or that E 7-l(7EAC) for
some 7. The first condition is essentially the same as given in Table 5.1. The second
condition is, in general, too obscure to be useful. Two important special cases are
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A TAXONOMY FOR CONJUGATE GRADIENT METHODS 1561

E I and E C. In the former case AC must be I-normal(I). If C is Hermitian
and commutes with A, this is true whenever A is/-normal(i). For example, if C is a
polynomial in the Hermitian matrix A, AC CA is Hermitian, and so both GPCR
and GCR are applicable. Also note that GPCR and GCR are identical when C I.
The Method PCR. When E C in GPCR, the important method PCR results;
see Table 5.4. Here we require that C be hpd so that B A’CA is hpd. This method
is applicable if and only if AC is C-normal(I). By Theorem 5.1, this is equivalent to
requiring that either eiOA be Hermitian for some 0 or that C-1 l-/(-yA)* for some 7.
The first condition is essentially the same as given in Table 5.2. The second condition
is more interesting: it implies that PCR is applicable to any definite matrix.

I(A+A* (A-A*To further explain this choice of C, let S and N ); also
let -y + it/. Then C (S + ilN)-. In other words, C is the inverse of some
linear combination of S and iN, both of which are Hermitian. Since C must be hpd,
not every linear combination suffices. A more enlightening view of C is to note that
it must be the inverse of the Hermitian part of "),A for some " 0. If A is definite, -may be chosen so that S. -(/A 4-a/A*) is hpd. If N. -(q,A- 9A*), then

1
(S, + N.SN.)

is also hpd. Moreover,

CA 1-(I + SN.).
The use of this method with -), 1 was first described in [15].
GCGE. In this pattern B I, and so the/-norm of the error is minimized at each
step. Theorem 5.1 requires that either eiOD be Hermitian or that (q,D) (AA*) -1.
Although the second condition is impractical, the first is interesting. It states that D
must be essentially Hermitian, the condition given in Table 5.1. Note that there is
no restriction on the matrix A. If D is hpd, then A*DA (D1/9A)*D1/2A is a form
of the normal equations. For example, if D I, the method CGNE results. Another
choice is D (MM*)-1, where M-1 is any preconditioning for A. This yields the
method PCGNE of Table 5.2. If D is Hermitian indefinite, we may minimize in the
B I norm without resorting to some form of the normal equations; recall 5.3.

GCGIB. Here B is an arbitrary hpd matrix. The restrictions on D are similar to
those in GCGE. Again note that A may be arbitrary if eieD is Hermitian for some 0.
For example, suppose B S (,A) for some -y for which S is hpd. Furthermore,
let D S for any fl - 0. Then

1
CA= B-1A*DA= --S

1 (I_S1l(& N,y)S-I(sfl 4- N) - N,.,/)(I 4- S;1Nfl).
If fl "y, then

1
(I-(SCA- -Compare this method to PCR with C S--1; there I.rlUB & + N;..qlN.y and

"),CA I+S1N.. Note the similarity between the inner product matrices. Although
GCGIB requires twice as many matrix-vector multiplications as PCR, there may be
circumstances for which each method is preferable.
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1562 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

If A is real and definite, S is hpd for either /= 1 or -1. Hageman, Luk,
and Young [19] have shown that GCGIB with B S and D S-1 is equivalent to
the "double" method obtained by taking every other step of the GCW method. Also
see GPCG above.

GCGCB. Again B must be hpd; we require that it commute with A for computabil-
ity. (If B ZA for some computable matrix Z, see patterns P1-P4.) The restrictions
on BD follow from Theorem 5.1. The first condition is essentially the same as given
in Table 5.1; the second condition seems intractable. Also see 5.3.

In this section we have explored the domain of applicability for each of the patterns
introduced in Table 5.1. For the most part, these patterns are limited to B-self-adjoint
matrices. However, GCR and PCR have broader application. For example, PCR is
applicable to any definite matrix A. Of course, the efficacy of this method depends on
the quality of C (-(’),A)) -1 as a preconditioner. If this C is a poor preconditioner,
some form of the normal equations might be more efficient.

5.5. Other methods. The methods above assume CA is B-normM(1). If CA is
not B-normM(1) for some B, a 3-term CG method does not exist. For such matrices
it is tempting to use CG(B, C, A) anyway. The resulting method is called a truncated
CG method, so named because the recursion (2.3) is artificially truncated. Although
not optimal at each step, such methods are often effective [15], [35]. Along with
optimality, the equivalence of Odir, Omin, and Ores is lost. In practice, truncated
Omin and Ores have been observed to converge faster than truncated Odir [35]. A
CG method may also be restarted after s steps. This leads to a cyclic method; within
a cycle the error is minimized at each step. An example of such a method is GMRES
[33]. See [32] for a discussion and comparison of truncated and/or restarted methods.

Finally, we might consider an OrthogonM Error Method [17]. Here the matrix
B need only be definite. Like CG methods, an OEM is guaranteed to converg in
at most n steps, and a 3-term OEM exists for CA if and only if CA is B-normal(l)
or d(CA) _< 3. Since B is no longer hpd, the definition of B-normal(l) is slightly
different; cf. [17]. Moreover, it is unclear whether an OEM reduces the error in some
norm at every step, as does a CG method.

6. Eigenvalue estimates. It is well known [18] that CGHS is related to the
Lanczos procedure for computing eigenvMues. A similar relationship exists for PCG
[10]. In this section we generalize the relationship to any CG method: When CA is B-
normal(I), eigenvMue estimates for CA may be obtained from a Hermitian tridiagonal
matrix constructed from the iteration parameters yj and aj (if Odir is used), or &j
and/j (if Omin is used). Moreover, these estimates lie in H(CA), the convex hull
of the spectrum of CA. Since CA is B-normM(1), H(CA) is a line segment in the
complex plane. If this line segment does not include the origin, then estimating the
B-condition number of CA,

nB(CA)

is equivalent to determining the endpoints of H(CA). We will use this estimate of
,(CA) in the stopping criteria discussed below.

6.1. Preliminaries. Suppose CA is B-normal(I) and Po,...,Pk-1 are the B-
orthogonal direction vectors generated by Odir. Also let Pk be the n k matrix with
columns P0,... ,pk-1. Theorem 3.2b implies

P;BPk Dk diag(hj_l), 5j_ (Bpj_I,Pj_).
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A TAXONOMY FOR CONJUGATE GRADIENT METHODS 1563

Since B is hpd, 5j-1 is positive, and so Dk is hpd. The three term recursion (3.2g)
yields

P[ BCAPk DkTk

where Tk tridiag (1, /j-1, ay) is a tridiagonal matrix.
The field of values of G with respect to the B inner product is defined to be

<BGx, x} cn }FB(G) )--
(Bx, xl

for some x e

Now suppose ,k is an eigenvalue of Tk with eigenvector x, that is, Tkx Ax. Then

A (DkTkx, x> (BCAPkx Pkx> E FB(CA).(Dkx, x} (BPx, Pkx

This leads to the main result of this section.
THEOREM 6.1. If is an eigenvalue of Tk, then iX H(CA).
Proof. The result follows from the discussion above and the fact that FB(CA)

H(CA) if CA is B-normal; cf. [22]. D
Theorem 6.1 guarantees that the eigenvalues of Tk lie in H(CA). However, using

a remarkable property of tridiagonal matrices, much more can be said. To do so it is
necessary to examine Tk in greater detail.

6.2. The matrix Tk. Recall from equation (2.8) that CA is B-normal(I) if and
only if

(6.1) CA ei (i I + G) r > O, O_<O_<2r, G+ G.

Therefore,

)DkTk PBCAPk ei i-Dk + PBGPk
Now define

(6.2) (r )Dlk/2TkD-1/2 DI/2pBCAPkD;1/2 e’ i-I + Hk

where Hk D-I/2pBGPkD-/2. Since G is B-self-adjoint, BG G’B, and so

Hk is Hermitian. Thus 2k is the translation and rotation of a Hermitian matrix.3

Moreover, since Tk and Tk are similar, they have the same eigenvalues. To find the
eigenvalues of Tk it is convenient to find those of Hk first. Once these are computed,
the eigenvalues of Tk are easily found by translation and rotation. Also notice that
(6.2) resembles (6.1): Hk is Hermitian in (6.2) whereas G is B-self-adjoint in (6.1).

We now show how the Odir iteration parameters, 7j and cry, may be used to
construct the matrix Hk. Recall that

Tk tridiag (1, /j_l,

3 It can also be shown that k is an orthogonal section of B1/2CAB-1/2, which is similar to CA.
This provides an alternative means of obtaining the results in this section.
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1564 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

which, yields

(6.3) k tridiag
5j-2 ] /-1, a 5 ]

From Corollary 3.3e and its proof it follows that

e2i0 5 and
r im(e_i0(Tj

(j ]
j--1).

Substituting these into expression (6.3) for k gives

(6.4) Hk tridiag(e-i(bJ-1) 1/2

e 515j-2
Re -io eio

When CA is B-self-adjoint, r 0 and 0 0. Corollary 3.3e then yields aj

5j/by-1, and equation (6.2) becomes

(6.5) k gk tridiag (aj_, Yy-1, ).
Here aj > 0, so the square roots are real, and thus Tk is real symmetric.

In the derivation above, Hk is defined in terms of 7j and aj, the iteration param-
eters of Odir. When BCA is definite, Omin should be employed. Equation (4.2) may
be used to redefine Hk in terms of dj and y, the iteration parameters of Omin:

Tk_ tridiag( 1 l+j-1 -1)dj--2 j-- j

( (5j-1/1/2 1 1 -}-/j-1 (bj-l11/2j-1)k--tridiag-
&j-2 &j-1 (y

and

Hk-tridiag(-e-i(bJ-l1/21 Re(e-i17) -ei()1/2)] j--2 aj--1 j--1

where now 5j {By, }. Thus, regardless of the algorithm used, the matrix Hk can
always be constructed without additional inner products.

6.3. CG(B C A) as a Lanczos procedure. We now investigate the relation-
ship between the spectra of and CA. Let {kj}=1 be the eigenvalues of Tk. These
are easily found from the eigenvalues, {ky }, of Hk"

Tkj i+kj, j-1,...,k.

Since Hk is Hermitian, each ky is real. Also notice that Hk is a leading principle
submatrix of Hd, where d- d(s0, CA). (Recall that CG converges to x A-b in at
most d steps.) Since Hd is tridiagonal, the eigenvalues of Hk interlace those of Hk+l"
(6.6) k+l,j kj k+,j+.

See [30]. Therefore, the eigenvalues of k interlace those of + along H(CA).
Finally, let ad(CA) be the spectrum of Td. This is the set of eigenvalues of CA
corresponding to eigenvectors present in the eigenvector expansion of s0. By the
interlacing property above, the eigenvalues of Tk converge to ad(CA) as k d.
Consequently, CG(B, C, A) may be viewed as a generalized Lanczos procedure.
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6.4. Estimating B(CA). When BCA is definite, it is possible to estimate

B(CA) IICAIIBII(CA)-IlI from H(Hk). To see how, first note that only the
algebraically smallest and largest eigenvalues of Hk, ?min and mx, are needed to
determine H(Hk), and thus to estimate H(CA). In particular,

H(Hk) {z" z o?min - (1 O)?max O e [0, 1]}.

The corresponding estimate for H(CA) is

(6.7) {Z’Z O/mi --(1 --O/),max, O e [0, 1]} C H(CA),

where

r ?j) j min,maxAj ei (i +

as in equation (6.2). Since the inclusion in (6.7) may be proper, we have

(6.8) IICAIIB
Estimating II(CA)-IIB is trickier. First observe that H(CA) does not include the

origin because BCA is definite. If the matrix G in (2.8) is definite, then ?min?max > 0,
and so

(6.9) [[(CA)-I[I, max{IAml-,
If G is indefinite, then ?min?max

__
0, in which case it is difficult to estimate the

smallest eigenvalue of CA. However, we do have

2
(6.10) II(CA)- IIB

r

Combining (6.8) and (6.9) or (6.8) and (6.10) yields an estimate for a(CA). Note
that successive estimates for aB(CA) are nondecreasing because of the interlacing
property (6.6).

When BCA is indefinite, r 0 and ?min?max 0. Equation (6.8) still holds,
but an estimate for II(CA)-IlIB is impossible. Also note that the results above hold
for any B for which CA is B-normal(I). For example, in GCGHS the matrix CA is
both CA-normal(I) and I-normal(i). This will be important in the stopping criteria
discussed next.

6.5. Stopping criteria. In any iterative algorithm an important practical ques-
tion is this: when should the algorithm halt? Most algorithms halt when the relative
error is sufficiently small in some norm, that is, when

(6.11) II  IIM <
IlxllM

for some hpd M and e > O. There are many norms in which to measure the relative
error. For example, the residual norm (M- A’A) yields the stopping criterion

(6.12) II  IIM IIr ll <
IIXlIM Ilbll

D
ow

nl
oa

de
d 

03
/0

8/
17

 to
 1

30
.2

02
.2

32
.2

25
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1566 S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR

where I1" denotes the Euclidean norm. If M (CA)*(CA), the preconditioned
residual norm results, and it gives

(6.13) IlellM Ilsll < e

where s Cri is the preconditioned residual. Finally, if C is hpd, M A’CA yields

(6.14) IleillM ( (si’ri) )
1/2

Note that each stopping criterion above is computable because r and s are com-
putable. However, its evaluation may require computing additional inner products,
thus increasing the expense of the algorithm. If Omin is used, the following idea of
Joubert [26] avoids this extra expense until convergence is near. To explain, suppose
the stopping criterion (6.12) is desired in GCGHS, in which IIsll is computed but

rll is not. If Cll is known, we my use the inequality IIsll IICII IIrll to void
computing IIrll. Specicny, if

(6.15) IICtl ttbtt
>

then (a.X2)cnnot be stised. Thus Irll need not be computed untn (6.15)is
violated. Similar results hold for other methods.

If an a priori estimate for the M-condition number of CA is available, we may
use the inequality

(6.16) IIIIM < M(CA)IIs, IIM
IIxlIM IICblIM

to implement a stopping criterion based on the M-norm, even if this norm is uncom-
putable. For example, suppose M I. If the algorithm is hMted when the right-hand
side in (6.16) is less than or equal to , then the relative error in the computed solution
is at most e. Unfortunately, M(CA) is seldom known a priori. However, if CA is
definite, we may dynamically estimate (CA) from the eigenvalue estimates derived
above; recall equations (6.8)-(6.10). Since CA is definite, the Omin algorithm should
be used, in which ce the quantity (C*Be, r) is available from the numerator of
Thus the stopping criterion

(6.17) [ellB < (B(CA)I(C*Be"ri)l)1/2
is easily and cheaply implemented. Its satisfaction guarantees that the B-norm of
the relative error is at most e. Note that C*Bx is computable whenever C*Be is
computable, and so (6.17) is computable.

If ,() is vb, (.17) nd

Ilxll IlxllB
yield

(6.18) Ile, < (I(B)B(CA)I(C*Be"r’)[)/2
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which is a bound on the relative error in the/-norm. The availability of hi(B) depends
on the pattern being used; see [3].

Recall that the eigenvalue estimates obtained above yield an approximation to
tB(CA) only when CA is definite. Moreover, this approximation need not be up-
dated (increased) at each step. Instead, it should be updated when the stopping
criterion using the current approximation is satisfied. For example, if (6.17) is used,
the approximation for nB(CA) should be updated only when the second inequality
in (6.17) is satisfied. If this inequality still holds using the new approximation for
tB(CA), then the iteration should be stopped.

7. Summary. This paper provides a framework for the analysis and classifica-
tion of conjugate gradient methods. Specifically, any 3-term CG method for Ax b
is characterized by an hpd inner product matrix B and a left preconditioning matrix
C. The algorithm Odir(B, C,A) is presented and shown to converge to x A-lb in
at most d(so, CA) steps for every x0 if and only if CA is B-normal(i) or d(CA) <_ 3.
When BCA is definite, the more efficient Omin(B, C, A) has a similar property. The
characterization above leads to a taxonomy for CG methods, which is used to clas-
sify and investigate a variety of methods. Finally, eigenvalue estimates for CA are
computed from a Hermitian tridiagonal matrix constructed from the CG iteration
parameters. These estimates may be used to implement a stopping criterion based
more nearly on the true error rather than residual error.
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