<div dir="ltr"><div>On Sat, Feb 4, 2017 at 9:47 AM, Gideon Simpson <span dir="ltr"><<a href="mailto:gideon.simpson@gmail.com" target="_blank">gideon.simpson@gmail.com</a>></span> wrote:<br></div><div class="gmail_extra"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word">Would setting it up as a DAE in petsc be algorithmically euivalent to a projected method (i.e., step of standard RK followed by nonlinear projection)?</div></blockquote><div><br></div><div>I am not sure, as I do not understand those solvers. However, I wrote my own solver that does exactly that MIMEX.</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word"><div><div>
<span class="m_2289173671282523641Apple-style-span" style="border-collapse:separate;color:rgb(0,0,0);font-family:Helvetica;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:-webkit-auto;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">-gideon</span>
</div>
<br><div><blockquote type="cite"><div>On Feb 3, 2017, at 11:47 PM, Matthew Knepley <<a href="mailto:knepley@gmail.com" target="_blank">knepley@gmail.com</a>> wrote:</div><br class="m_2289173671282523641Apple-interchange-newline"><div><div dir="ltr">That is one answer. Another one is that this particular system is a DAE and we have methods for that.<div><br></div><div> Matt</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Fri, Feb 3, 2017 at 8:40 PM, Barry Smith <span dir="ltr"><<a href="mailto:bsmith@mcs.anl.gov" target="_blank">bsmith@mcs.anl.gov</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><br>
TSSetPostStep(); in your function use TSGetSolution() to get the current solution.<br>
<br>
Please let us know how it works out<br>
<span class="m_2289173671282523641HOEnZb"><font color="#888888"><br>
Barry<br>
</font></span><div class="m_2289173671282523641HOEnZb"><div class="m_2289173671282523641h5"><br>
<br>
<br>
> On Feb 3, 2017, at 7:14 PM, Gideon Simpson <<a href="mailto:gideon.simpson@gmail.com" target="_blank">gideon.simpson@gmail.com</a>> wrote:<br>
><br>
> I’m interested in implementing a projection method for an ODE of the form:<br>
><br>
> y’ = f(y),<br>
><br>
> such that g(y) = 0 for all time (i.e., g is conserved). Note that in a projection method, a standard time step is made to produce y* from y_{n}, and then this is corrected to obtain y_{n+1} satisfying g(y) = 0.<br>
><br>
> There were two ways I was thinking of doing this, and I was hoping to get some input:<br>
><br>
> Idea 1: Manually loop through using taking a time step and then implementing the projection routine. I see that there is a TSStep command, but this doesn’t seem to be much documentation on how to use it in this scenario. Does anyone have any guidance?<br>
><br>
> Idea 2: Is there some analog to TSMonitor that allows me to modify the solution after each time step, instead of just allowing for some computation of a statistic?<br>
><br>
><br>
<br>
</div></div></blockquote></div><br><br clear="all"><span class="HOEnZb"><font color="#888888"><div><br></div>-- <br><div class="m_2289173671282523641gmail_signature" data-smartmail="gmail_signature">What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div>
</font></span></div>
</div></blockquote></div><br></div></div></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature">What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div>
</div></div>