<div dir="ltr">Hi again, <div> Please allow me to explain in detail here:-</div><div><ol><li>I am using Zang's (jcp 1994) method for incompressible flow on generalized collocated grid.</li><li>The main difference lies on the calculation of the grid matrix, for which I am using Gaitonde et al (2002)'s work <br></li><li>I want to use python to set up the domain , grid(structured) and boundary/initial conditions.<br></li><li>I want petsc to a) decompose the domain with dmda b) use ksp for linear solver.<br></li></ol></div><div><br></div><div>I <u> have not</u> used petsc4py rigorously , so before trying his venture I wnt to know whether it is feasible or not, and if there is any example for similar work (so that I can copy their approach, to be precise)</div><div><br></div><div>Have a very good day.</div><div><br></div><div>Somdeb</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Oct 5, 2016 at 10:23 AM, Somdeb Bandopadhyay <span dir="ltr"><<a href="mailto:sb020287@gmail.com" target="_blank">sb020287@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi again Sir,<div> Thank you very much for the quick response. I am planning to implement a mustiphase algorithm on collocated grid. I already qrote a C code for 2d case, but it wasn't very generalized . So for the final version, I intend to use python as a script to interact with PETSc kernels. </div><span class="HOEnZb"><font color="#888888"><div><br></div><div>Somdeb</div><div><br></div></font></span></div><div class="HOEnZb"><div class="h5"><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Oct 5, 2016 at 10:12 AM, Matthew Knepley <span dir="ltr"><<a href="mailto:knepley@gmail.com" target="_blank">knepley@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_extra"><div class="gmail_quote"><span>On Tue, Oct 4, 2016 at 9:02 PM, Somdeb Bandopadhyay <span dir="ltr"><<a href="mailto:sb020287@gmail.com" target="_blank">sb020287@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Dear all,<div> I want to write a solver for incompressible navier stokes using python and I want to use PETsc (particularly dmda & ksp) for this. May I know if this type of work is feasible/already done?</div></div></blockquote><div><br></div></span><div>How do you plan to discretize your system? DMDA supports only collocation discretizations, so some sort of penalty for pressure would</div><div>have to be employed.</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><span><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div> I intend to run my solver in a cluster and so am slightly concerned about the performance if I use python with petsc.</div><div> My deepest apologies if this mail of mine caused you any inconvenience.</div><span class="m_8536208459981610581m_2008991588837862582HOEnZb"><font color="#888888"><div><br></div><div>Somdeb</div></font></span></div>
</blockquote></span></div><span class="m_8536208459981610581HOEnZb"><font color="#888888"><br><br clear="all"><div><br></div>-- <br><div class="m_8536208459981610581m_2008991588837862582gmail_signature" data-smartmail="gmail_signature">What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div>
</font></span></div></div>
</blockquote></div><br></div>
</div></div></blockquote></div><br></div>