<div dir="ltr"><div class="gmail_extra"><div class="gmail_quote">On Thu, Jun 2, 2016 at 5:27 PM, Luc Berger-Vergiat <span dir="ltr"><<a href="mailto:lb2653@columbia.edu" target="_blank">lb2653@columbia.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div text="#000000" bgcolor="#FFFFFF">
Ok I get it, then if I have multiple subdomains on the local
processor is and is_local will be arrays of is that represent each
subdomain on that processor?<br></div></blockquote><div><br></div><div>Yep.</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div text="#000000" bgcolor="#FFFFFF">
Best,<br>
Luc<br>
<br>
<div>On 06/02/2016 06:21 PM, Matthew Knepley
wrote:<br>
</div>
<blockquote type="cite">
<div dir="ltr">
<div class="gmail_extra">
<div class="gmail_quote">On Thu, Jun 2, 2016 at 5:11 PM, Luc
Berger-Vergiat <span dir="ltr"><<a href="mailto:lb2653@columbia.edu" target="_blank"></a><a href="mailto:lb2653@columbia.edu" target="_blank">lb2653@columbia.edu</a>></span>
wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hi all,<br>
I would like a quick clarification on what is and is_local
are representing in the PCASMSetLocalSubdomains().<br>
My understanding is that if I have two mpi ranks and four
subdomains I can end up having four blocks that I can
denote as follows:<br>
<br>
| domain1 | domain2 | domain3 |
domain3 |<br>
rank1 | block11 | block12 | block13 | |<br>
rank2 | block21 | block22 | -- |
block24 |<br>
<br>
to each blockIJ I associate isIJ.<br>
<br>
So for rank1 I will have is=[1,2,3] and
is_local=[is11,is12,is13], and for rank2 I will have
is=[1,2,4] and is_local=[is21,is22,is24].<br>
Or am I not understanding things correctly?</blockquote>
<div><br>
</div>
<div>I did not understand the above.</div>
<div><br>
</div>
<div>The best way to think of this is algebraically. Suppose
you have a matrix A, and you divide the rows into k
disjoint sets where each</div>
<div>process gets one set. Then is_local on each process is
a list of the rows in that set. Now we also allow some
overlap, which means</div>
<div>rows in other sets are also used. The is on each
process contains both is_local and these extra rows from
other sets.</div>
<div><br>
</div>
<div> Thanks,</div>
<div><br>
</div>
<div> Matt</div>
<div> </div>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span><font color="#888888"><br>
-- <br>
Best,<br>
Luc<br>
<br>
<br>
</font></span></blockquote>
</div>
<br>
<br clear="all"><span class="HOEnZb"><font color="#888888">
<div><br>
</div>
-- <br>
<div data-smartmail="gmail_signature">What
most experimenters take for granted before they begin their
experiments is infinitely more interesting than any results
to which their experiments lead.<br>
-- Norbert Wiener</div>
</font></span></div><span class="HOEnZb"><font color="#888888">
</font></span></div><span class="HOEnZb"><font color="#888888">
</font></span></blockquote><span class="HOEnZb"><font color="#888888">
<br>
<pre cols="72">--
Best,
Luc</pre>
</font></span></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature">What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div>
</div></div>