<div dir="ltr"><div class="gmail_extra"><div class="gmail_quote">On Fri, Jan 22, 2016 at 4:27 PM, Justin Chang <span dir="ltr"><<a href="mailto:jychang48@gmail.com" target="_blank">jychang48@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi all,<div><br></div><div>Consider the following problem:</div><div><br></div><div><span style="font-size:13px">minimize 1/2<c,Kc> - <c,f></span><br style="font-size:13px"><span style="font-size:13px">subject to c >= 0 (P1)</span><br></div><div><span style="font-size:13px"><br></span></div><div><span style="font-size:13px">To solve (P1) using TAO, I recall that there were two recommended solvers to use: TRON and BLMVM</span></div><div><span style="font-size:13px"><br></span></div><div><span style="font-size:13px">I recently got reviews for this paper of mine that uses BLMVM and got hammered for this, as I quote, "convenient yet inadequate choice" of solver. </span></div></div></blockquote><div><br></div><div>If they did not back this up with a citation it is just empty snobbery, not surprising from some quarters.</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><font size="2">It was suggested that I use either semi smooth Newton methods </font><span style="font-size:small">or projected Newton methods for the optimization problem. My question is, are these methodologies/solvers available currently within PETSc/TAO? </span></div></div></blockquote><div><br></div><div>You can Google TRON and BLMVM and they come up on the NEOS pages. BLMVM is a gradient descent method, but</div><div>TRON is a Newton method, so trying it may silence the doubters.</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><span style="font-size:small">1) I see that we have SNESVINEWTONSSLS, and I tried this over half a year ago but it didn't seem to work. I believe I was told by one of the PETSc developers (Matt?) that this was not the one to use?</span></div><div><br></div><div><span style="font-size:small">2) Is TRON a type of projected Newton method? I know it's an active-set Newton trust region, but is this a well-accepted high performing optimization method to use?</span></div><div><span style="font-size:small"><br></span></div><div><font size="2">I was also referred to ROL: <a href="https://trilinos.org/packages/rol" target="_blank">https://trilinos.org/packages/rol</a> but I am guessing this isn't accessible/downloadable from petsc at the moment?</font></div><div><font size="2"><br></font></div><div><font size="2">Thanks,</font></div><div><font size="2">Justin</font></div></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature">What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div>
</div></div>