<html><head><meta http-equiv="Content-Type" content="text/html charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class="">I’m solving nonlinear problem for a complex valued function which is decomposed into real and imaginary parts, Q = u + i v.  What I’m finding is that where |Q| is small, the numerical phase errors tend to be larger.  I suspect this is because it’s using the 2-norm for convergence in the SNES, so, where the solution is already, the phase errors are seen as small too.  Is there a way to use something more like an infinity norm with SNES, to get more point wise control?<div class=""><br class=""><div class="">
<span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: Helvetica; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px;  ">-gideon</span>

</div>

<br class=""></div></body></html>