<div dir="ltr"><div><div>Ok, so it should be sufficient. Great, I think I can do it.<br><br></div>Best<br><br></div>Timothée<br></div><div class="gmail_extra"><br><div class="gmail_quote">2016-01-07 23:06 GMT+09:00 Matthew Knepley <span dir="ltr"><<a href="mailto:knepley@gmail.com" target="_blank">knepley@gmail.com</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_extra"><div class="gmail_quote"><span class="">On Thu, Jan 7, 2016 at 7:49 AM, Timothée Nicolas <span dir="ltr"><<a href="mailto:timothee.nicolas@gmail.com" target="_blank">timothee.nicolas@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div><div><div>Hello everyone,<br><br></div>I have discovered that I need to use Block Jacobi, rather than Jacobi, as a preconditioner/smoother. The linear problem I am solving at this stage lives in a subspace with 3 degrees of freedom, which represent the 3 components of a 3D vector. In particular for multigrid, using BJACOBI instead of JACOBI as a smoother changes everything in terms of efficiency. I know it because I have tested with the actual matrix in matrix format for my problem. However, eventually, I want to be matrix free.<br><br></div>My question is, what are the operations I need to provide for the matrix-free approach to accept BJACOBI ? I am confused because when I try to apply BJACOBI to my matrix-free operator; the code asks for MatGetDiagonalBlock (see error below). But MatGetDiagonalBlock, in my understanding, returns a uniprocessor matrix representing the diagonal part of the matrix on this processor (as defined in the manual). Instead, I would expect that what is needed is a routine which returns a 3x3 matrix at the grid point (that is, the block associated with this grid point, coupling the 3 components of the vector together). How does this work ? Do I simply need to code MatGetDiagonalBlock ?<br></div></div></div></div></blockquote><div><br></div></span><div>Just like Jacobi does not request one diagonal element at a time, Block-Jacobi does not request one diagonal block at a time. You</div><div>would need to implement that function, or write a custom block Jacobi for this matrix.</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><span class=""><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div><br></div>Thx<br></div>Best<br><br></div>Timothée<br><div><div><div><br>[0]PETSC ERROR: --------------------- Error Message --------------------------------------------------------------<br>[0]PETSC ERROR: No support for this operation for this object type<br>[0]PETSC ERROR: Matrix type shell does not support getting diagonal block<br>[0]PETSC ERROR: See <a href="http://www.mcs.anl.gov/petsc/documentation/faq.html" target="_blank">http://www.mcs.anl.gov/petsc/documentation/faq.html</a> for trouble shooting.<br>[0]PETSC ERROR: Petsc Release Version 3.6.1, Jul, 22, 2015 <br>[0]PETSC ERROR: ./miips on a arch-linux2-c-debug named Carl-9000 by timothee Thu Jan 7 22:41:13 2016<br>[0]PETSC ERROR: Configure options --with-cc=gcc --with-cxx=g++ --with-fc=gfortran --download-fblaslapack --download-mpich<br>[0]PETSC ERROR: #1 MatGetDiagonalBlock() line 166 in /home/timothee/Documents/petsc-3.6.1/src/mat/interface/matrix.c<br>[0]PETSC ERROR: #2 PCSetUp_BJacobi() line 126 in /home/timothee/Documents/petsc-3.6.1/src/ksp/pc/impls/bjacobi/bjacobi.c<br>[0]PETSC ERROR: #3 PCSetUp() line 982 in /home/timothee/Documents/petsc-3.6.1/src/ksp/pc/interface/precon.c<br>[0]PETSC ERROR: #4 KSPSetUp() line 332 in /home/timothee/Documents/petsc-3.6.1/src/ksp/ksp/interface/itfunc.c<br>[0]PETSC ERROR: #5 KSPSolve() line 546 in /home/timothee/Documents/petsc-3.6.1/src/ksp/ksp/interface/itfunc.c<br></div></div></div></div>
</blockquote></span></div><span class="HOEnZb"><font color="#888888"><br><br clear="all"><div><br></div>-- <br><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div>
</font></span></div></div>
</blockquote></div><br></div>