<html>
  <head>
    <meta content="text/html; charset=utf-8" http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    Hi Hong,<br>
    <br>
    I just checked using ex10 for these matrices and rhs, they all work
    fine. I found something is wrong in my code when using direct
    solver.  The second parameter mat in PCFactorGetMatrix(PC pc,Mat
    *mat) is not initialized in my code for SUPERLU or MUMPS. <br>
    <br>
    I will fix this bug, rerun the tests and get back to you later.<br>
    <br>
    Thanks very much,<br>
    <br>
    Danyang
    <meta http-equiv="content-type" content="text/html; charset=utf-8">
    <br>
    <br>
    <div class="moz-cite-prefix">On 15-12-03 01:59 PM, Hong wrote:<br>
    </div>
    <blockquote
cite="mid:CAGCphBvdEmCRdC5u1bETyMyZ5gb1GHy30jEG2F=F-KXFhd67pw@mail.gmail.com"
      type="cite">
      <div dir="ltr">
        <div class="gmail_extra">
          <div class="gmail_quote">Danyang :</div>
          <div class="gmail_quote">Further testing a_flow_check_168.bin,</div>
          <div class="gmail_quote">
            <div class="gmail_quote">./ex10 -f0
              /Users/Hong/Downloads/matrix_and_rhs_bin/a_flow_check_168.bin
              -rhs
              /Users/Hong/Downloads/matrix_and_rhs_bin/x_flow_check_168.bin
              -pc_type lu -pc_factor_mat_solver_package superlu
              -ksp_monitor_true_residual -mat_superlu_conditionnumber</div>
            <div class="gmail_quote">  Recip. condition number =
              1.610480e-12</div>
            <div class="gmail_quote">  0 KSP preconditioned resid norm
              6.873340313547e+09 true resid norm 7.295020990196e+03
              ||r(i)||/||b|| 1.000000000000e+00</div>
            <div class="gmail_quote">  1 KSP preconditioned resid norm
              2.051833296449e-02 true resid norm 2.976859070118e-02
              ||r(i)||/||b|| 4.080672384793e-06</div>
            <div class="gmail_quote">Number of iterations =   1</div>
            <div class="gmail_quote">Residual norm 0.0297686</div>
            <div class="gmail_quote"><br>
            </div>
            <div class="gmail_quote">condition number of this matrix =
              1/1.610480e-12 = 1.e+12,</div>
            <div class="gmail_quote">i.e., this matrix is
              ill-conditioned. </div>
            <div class="gmail_quote"><br>
            </div>
            <div class="gmail_quote">Hong</div>
            <div class="gmail_quote"><br>
            </div>
            <div class="gmail_quote"><br>
            </div>
            <blockquote class="gmail_quote" style="margin:0px 0px 0px
0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">
              <div text="#000000" bgcolor="#FFFFFF"> Hi Hong,<br>
                <br>
                The binary format of matrix, rhs and solution can be
                downloaded via the link below.<br>
                <br>
                <a moz-do-not-send="true"
href="https://www.dropbox.com/s/cl3gfi0s0kjlktf/matrix_and_rhs_bin.tar.gz?dl=0"
                  target="_blank">https://www.dropbox.com/s/cl3gfi0s0kjlktf/matrix_and_rhs_bin.tar.gz?dl=0</a><br>
                <br>
                Thanks,<br>
                <br>
                Danyang
                <div>
                  <div class="h5"><br>
                    <br>
                    On 15-12-03 10:50 AM, Hong wrote:<br>
                    <blockquote type="cite">
                      <div dir="ltr">
                        <div class="gmail_extra">
                          <div class="gmail_quote">Danyang:<br>
                            <blockquote class="gmail_quote"
                              style="margin:0px 0px 0px
0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">
                              <div text="#000000" bgcolor="#FFFFFF"><br>
                                <br>
                                To my surprising, solutions from SuperLU
                                at timestep 29 seems not correct for the
                                first 4 Newton iterations, but the
                                solutions from iteration solver and
                                MUMPS are correct. <br>
                                <br>
                                Please find all the matrices, rhs and
                                solutions at timestep 29 via the link
                                below. The data is a bit large so that I
                                just share it through Dropbox. A piece
                                of matlab code to read these data and
                                then computer the norm has also been
                                attached. <br>
                                <u><a moz-do-not-send="true"
href="https://www.dropbox.com/s/rr8ueysgflmxs7h/results-check.tar.gz?dl=0"
                                    target="_blank">https://www.dropbox.com/s/rr8ueysgflmxs7h/results-check.tar.gz?dl=0</a></u></div>
                            </blockquote>
                            <div><br>
                            </div>
                            <div>Can you send us matrix in petsc binary
                              format?</div>
                            <div><br>
                            </div>
                            <div>e.g., call MatView(M,
                              PETSC_VIEWER_BINARY_(PETSC_COMM_WORLD))</div>
                            <div>or '-ksp_view_mat binary'</div>
                            <div><br>
                            </div>
                            <div>Hong</div>
                            <blockquote class="gmail_quote"
                              style="margin:0px 0px 0px
0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">
                              <div text="#000000" bgcolor="#FFFFFF"><br>
                                <br>
                                Below is a summary of the norm from the
                                three solvers at timestep 29, newton
                                iteration 1 to 5.<br>
                                <br>
                                Timestep 29<br>
                                Norm of residual seq 1.661321e-09,
                                superlu 1.657103e+04, mumps 3.731225e-11
                                <br>
                                Norm of residual seq 1.753079e-09,
                                superlu 6.675467e+02, mumps 1.509919e-13
                                <br>
                                Norm of residual seq 4.914971e-10,
                                superlu 1.236362e-01, mumps 2.139303e-17
                                <br>
                                Norm of residual seq 3.532769e-10,
                                superlu 1.304670e-04, mumps 5.387000e-20
                                <br>
                                Norm of residual seq 3.885629e-10,
                                superlu 2.754876e-07, mumps 4.108675e-21
                                <br>
                                <br>
                                Would anybody please check if SuperLU
                                can solve these matrices? Another
                                possibility is that something is wrong
                                in my own code. But so far, I cannot
                                find any problem in my code since the
                                same code works fine if I using
                                iterative solver or direct solver MUMPS.
                                But for other cases I have tested,  all
                                these solvers work fine.<br>
                                <br>
                                Please let me know if I did not write
                                down the problem clearly.<br>
                                <br>
                                Thanks,<br>
                                <br>
                                Danyang<br>
                                <br>
                                <br>
                                <br>
                              </div>
                            </blockquote>
                          </div>
                          <br>
                        </div>
                      </div>
                    </blockquote>
                    <br>
                  </div>
                </div>
              </div>
            </blockquote>
          </div>
          <br>
        </div>
      </div>
    </blockquote>
    <br>
  </body>
</html>