
STRuctured Matrices PACKage User Guide
–

Distributed-Memory Dense Package
François-Henry Rouet∗, Xiaoye S. Li∗, Pieter Ghysels∗

Version 1.1.1, September 2015

∗Lawrence Berkeley National Laboratory, Computational Research Division, MS 50F-1650, One Cyclotron Road, Berkeley
CA94720. {fhrouet,xsli,pghysels}@lbl.gov

Contents
1 Introduction 4

1.1 STRUMPACK . 4
1.2 Distributed-Memory Dense Package . 4
1.3 Version history . 5

2 Installation 5
2.1 Requirements . 5
2.2 Running the examples . 6
2.3 Using STRUMPACK Dense Package within your code. 7
2.4 Compilation flags . 7

3 Algorithms 7
3.1 HSS Compression . 7

3.1.1 Idea . 7
3.1.2 Variants . 8
3.1.3 Parameters . 8

3.2 Factorization . 9
3.3 Solution . 9
3.4 Iterative refinement . 9
3.5 Accuracy checking . 9
3.6 Matrix-vector product . 9
3.7 Partial factorization, Schur complement computation, partial solution 10

4 User Interface 10
4.1 Matrix format . 10
4.2 StrumpackDensePackage object and initialization . 11
4.3 HSS compression . 12

4.3.1 Explicit matrix . 12
4.3.2 Explicit matrix, random vectors, and samples . 12
4.3.3 Matrix-free version . 12

4.4 Compression accuracy checking . 13
4.5 Factorization . 14
4.6 Partial factorization . 14
4.7 Schur complement computation . 14
4.8 Solution . 14
4.9 Right-hand side reduction . 15
4.10 Solution expansion . 15
4.11 Solution accuracy checking . 15
4.12 Solution iterative refinement . 15
4.13 Matrix-vector product . 16
4.14 Schur complement matrix-vector product . 16
4.15 Element extraction . 16
4.16 Schur complement element extraction . 16
4.17 Statistics . 16
4.18 C interface . 17
4.19 Fortran interface . 17
4.20 Octave/Matlab R© interface . 18

2

5 Parameters 18
5.1 General parameters . 18
5.2 HSS compression . 18
5.3 Iterative refinement . 19

6 Acknowledgements 19

7 Copyright notice 19

8 License agreement 20

3

1 Introduction
1.1 STRUMPACK
STRUMPACK – STRUctured Matrices PACKage – is a C++ library for computations with sparse and
dense matrices. STRUMPACK has presently two main components: a distributed-memory dense matrix
computations package and a shared-memory sparse direct solver. A sparse distributed-memory solver is
in development. This manual is for the distributed-memory, dense component of STRUMPACK, SDP
(STRUMPACK Dense Package).

STRUMPACK provides the usual building blocks of matrix computations: factorizations, matrix-vector
products, etc. It relies on a kind of structured matrices (or low-rank matrices) called Hierarchically Semi
Separable matrices (HSS). In many applications, such as boundary elements or finite elements, using HSS-
based algorithms allows for fast solution of linear systems and/or fast computation of matrix-vector products.
By “fast”, we mean faster than traditional algorithms, e.g., O(n3) factorizations and O(n2) multiplications
for dense matrices.

The main element of the HSS framework is the compression phase, i.e. computing an HSS representation
of the input matrix. The HSS representation can be exact or approximate; the compression algorithm
relies on a threshold that allows users to find the best trade-off between accuracy and performance for
their application. Using a large threshold will allow fast operations at the cost of accuracy, while a very low
threshold (close to machine precision) will ensure accuracy, at the cost of performance. For some applications,
HSS algorithms will provide large speedups (with respect to traditional algorithms) even with low thresholds,
while for some applications using a larger threshold is necessary. We provide more detail about this in the
next sections.

The STRUMPACK project started at the Lawrence Berkeley National Laboratory in 2014 and is sup-
ported by the FASTMath SciDAC Institute funded by the Department of Energy.

1.2 Distributed-Memory Dense Package
This user guide describes the dense component of STRUMPACK, SDP (STRUMPACK Dense Package).
SDP offers the following features:

• Compression of a dense matrix into HSS form, using either an explicit matrix or a matrix-free approach.

• Factorization of a dense matrix, either using classical LU (with ScaLAPACK) or in-house ULV factor-
ization for HSS matrices.

• Solution of a linear system, either using classical triangular solution (with ScaLAPACK) or specialized
solution algorithm for HSS matrices.

• Matrix-vector product (ditto).

• Partial factorization, computation of a compressed Schur complement, and partial forward/backward
solutions.

Using these features, STRUMPACK can easily be used as:

• A standalone direct linear solver,

• A preconditioner with a choice of cost-accuracy trade-off (which can be used in iterative linear solvers
or eigensolvers),

• A fast matrix-vector product for iterative linear solvers or eigensolvers.

• A dense kernel to be used within, e.g., a multifrontal solver.

4

Most of the features (e.g., factorization) can use exact algorithms (based on LAPACK/ScaLAPACK) or
the in-house HSS algorithms in STRUMPACK, by simply changing a parameter (no change to function calls
or data structures in most cases).

The main input of STRUMPACK is a dense matrix which can be either centralized or distributed following
the popular 2D block-cyclic format used in ScaLAPACK and other codes. We provide more detail about
this in the next sections.

SDP is described in detail in [2].

1.3 Version history
1.1.1 (09/03/2015)

• Parallel Octave/Matlab interface.
• Improved the Make system and the installation instructions.
• Bug fixes.

1.1.0 (08/27/2015)

• C interface.
• Fortran interface (using ISO C bindings).
• Octave/Matlab R© interface (mex files).

1.0.0 (08/14/2015)

• Matrix-free compression.
• Schur complement features: partial factorization, RHS reduction, solution expansion.
• Element extraction from the compressed matrix.

0.9.0 (12/19/2014) First public release.

• Compression of explicit matrices.
• Factorization and triangular solution.
• Matrix-vector product.

2 Installation
2.1 Requirements
The following libraries are necessary:
• MPI.

• ScaLAPACK (and BLACS).

• LAPACK.

• BLAS.
ScaLAPACK, BLACS, LAPACK and BLAS can often be found in bundles, for example in the Intel R©

MKL R© library, the AMD R© ACML R© library, or the Cray R© LibSci R© library. They can also be built from
scratch fairly easily. A good, high-performance, and freely available (and open source) implementation of
BLAS and LAPACK is OpenBLAS (www.openblas.net); the version of ScaLAPACK and BLACS found at
www.netlib.org/scalapack can be easily built on top of it. The ScaLAPACK Installer (same webpage) can
build everything in one go.

The code was tested with the GNU, Intel R© and PGI R© compilers, the OpenMPI and MPICHMPI libraries,
and the OpenBLAS, Intel R© MKL R© and Cray R© LibSci R© numerical libraries.

5

www.netlib.org/scalapack

2.2 Running the examples
We recommend running the examples (and reading their source code, which is very concise) in order to
become familiar with STRUMPACK.

To run the examples:
1. Go to the examples directory.

2. Create a Makefile.inc file following the examples shipped with STRUMPACK (Makefile.gnu, Make-
file.edison). It defines compilers, flags, and library locations.

3. Compile the examples; you can do:

• make to build everything (or make -j xx for parallel make). To do this you need C++, C, Fortran,
and mex (Octave/Matlab) compilers.
• make cpp_examples to build all the C++ examples. To do this you only need a C++ compiler.
• make c_example to build the C example. To do this you need C and C++ compilers.
• make f90_example to build the Fortran example. To do this you need C, C++, and Fortran

compilers.
• make mex_example to build the Octave/Matlab example. To do this you need C++ and mex
compilers.

• make xxx to build a specific example (e.g., "make solve". Cf. the list of example below).

4. Run the examples: they don’t take any input parameters, and they can be run with arbitrary number
of MPI ranks; e.g.,
mpirun -np 4 ./solve

The list of examples (Make targets) is the following:
1. solve (solve.cpp) solves a linear system.

Features: HSS compression (explicit matrix), ULV factorization, and triangular solution.

2. matrixfree (matrixfree.cpp) solves a matrix-free linear system.
Features: matrix-free HSS compression, ULV factorization, and triangular solution.

3. schur (schur.cpp) solves a linear system with a hybrid approach.
Features: HSS compression, partial factorization, Schur complement computation, Schur complement
element extraction, RHS reduction, solution expansion, and Schur complement matrix-vector product.

4. power (power.cpp) is a simplistic power method.
Features: HSS compression and HSS matrix-vector products.

5. product (product.cpp).
Features: HSS matrix-vector products.

6. selection (selection.cpp).
Features: Element extraction.

7. communicator (communicator.cpp illustrates the use of STRUMPACK with an MPI subcommunicator.

8. c_example (c_example.c) illustrates the use of the C interface; it is essentially a C version of solve.cpp.

9. f90_example (f90_example.F90) illustrates the use of the Fortran interface; it is essentially a Fortran
version of solve.cpp.

10. mex_example (mex_example.m) illustrates the use of the Octave/Matlab interface; it is essentially an
Octave/Matlab version of solve.cpp.

6

2.3 Using STRUMPACK Dense Package within your code.
If your code is in written in C++, you can use the native C++ interface of STRUMPACK Dense Package.
The only thing you have to do is to include the main header file (found in the src/ directory):

#include "StrumpackDensePackage.hpp"

In this situation, there is no object to be linked with your code besides the abovementioned required libraries.
If you wish to use the C interface, you need to include the header file src/StrumpackDensePackage.h to

your code, and you need to compile (and link with your code) file StrumpackDensePackage_C.cpp.
For the Fortran interface, you need to compile two files from the src/ directory:

1. StrumpackDensePackage.F90 (Fortran compiler).

2. StrumpackDensePackage_C.cpp (C++ compiler).

Then you can use the STRUMPACK Dense Package module inside you code:

use StrumpackDensePackage

You can to refer to the way target f90_example is built in examples/Makefile.

2.4 Compilation flags
A few STRUMPACK-specific compiler flags can be used when compiling:

• -DHQR: uses Householder RRQR instead of Modified Gram-Schmidt. This requires a Fortran compiler.
Files src/*.f need to be compiled and linked against your code. Refer to examples/Makefile and
src/Makefile.SDP.

• -DRANDGEN: uses a Mersenne Twister random number generator instead of the legacy C "rand" generator.
With -DRANDGENORMAL, the distribution is normal, otherwise it is uniform. This requires a compiler
compliant with C++11 standard.

• -DWITH_PAPI: experimental use of the PAPI library (icl.cs.utk.edu/papi/) that uses hardware counters
to gather statistics. Statistics provided by PAPI are displayed when print_statistics() is called.

• -DMEMTRACK: replaces the standard memory allocators with in-house allocators that allow us to track
memory peak usage (displayed when print_statistics() is called). This is *very* experimental and
might be unstable on some systems.

3 Algorithms
The different algorithms are described in detail in F.-H. Rouet, P. Ghysels, X. S. Li, A. Napov - A distributed-
memory package for dense Hierarchically Semi-Separable matrix computations. Here we briefly recall what
they do and how they are connected to each other. The HSS Compression algorithm is the only one
that requires parameter tuning by the user. The others are mostly black-box.

3.1 HSS Compression
3.1.1 Idea

The compression algorithm computes a representation (the HSS form) of a dense matrix; the representation
can be approximate or exact. After compression, the HSS representation can be used to perform matrix-
vector products, factorizations, etc., and the input matrix is no longer needed.

The HSS representation is computed via randomized sampling. The idea is to generate a number of
random vectors, generate samples of the row space and column space of the matrix using matrix-vector

7

products, and compute the HSS representation (or factors; a collection of small dense matrices) of the input
matrix. These HSS factors are computed using a compression algorithm that relies on a rank-revealing
factorization. The quality of the compression can be tuned using a numerical threshold.

3.1.2 Variants

STRUMPACK SDP provides three variants of the compression phase, i.e., three ways of passing the input
matrix to the compression algorithm:

1. Explicit matrix only: the implementation generates random vectors and computes the samples of the
row space and column space using classical matrix-vector products (with LAPACK/ScaLAPACK).
The random vectors and samples are not visible to the user.

2. Explicit matrix plus random vectors and samples: the user provides two sets of random vectors Rr and
Rc and also provides the samples Sr = ARr and Sc = A∗Rc. The advantage is that users can use their
own application-specific matrix-vector product, that may be faster than a traditional O(n2) matrix-
vector product. However, the user has to make sure that the random vector are “truly” random and
that Sr = ARr and Sc = A∗Rc hold, otherwise the HSS representation will most likely be inaccurate.

3. Matrix-free interface: the user provides random vectors, samples, and a function pointer to a routine
that provides access to arbitrary elements of the input matrix. We explain this in detail in
Section 4.3.3.

3.1.3 Parameters

The following parameters are important and should be tuned by the user for optimal perfor-
mance:

• The compression threshold tol_HSS: if it is set very low (e.g., close to machine precision), the
compression will be accurate but potentially slow, and the subsequent steps (solving a linear system,
computing a matrix-vector product. . .) will also be accurate but potentially slow, i.e. potentially slower
than using traditional algorithms (e.g., LU factorization). Conversely, if the threshold is aggressive
(e.g., 10−2), the compression and other operations will be fast but potentially inaccurate. This is very
application dependant.

• The sampling parameters: when user does not provide random vectors and samples, the compres-
sion process starts with a set a of min_rand_HSS random vectors that are used to generate a sample
of the input matrix. Different pieces of this sample are compressed using a rank-revealing factoriza-
tion. If the rank found during a rank-revealing step is too close to the number of random vectors (the
difference is smaller than lim_rand_HSS), the number of random vectors is increased by inc_rand_HSS.
There is a limit max_rand_HSS on the number of random vectors that can be used. If min_rand_HSS is
unnecessarily large, the compression algorithm will be slower than necessary.
When the user provides samples and random vectors, the compression stops if the rank found during
a rank-revealing step is too close to the number of random vectors. It is then the responsibility of
the user to increase the sample size and restart the compression. The user can choose to restart the
compression from scratch or to the resume the previous compression.

The choice of an algorithm for performing the rank-revealing factorization used at each step of the com-
pression stage also has an influence on performance. The default algorithm is an in-house QR factorization
with column pivoting that uses a Modified Gram-Schmidt scheme. By compiling with -DHQR it is replaced
with an Householder reflections-based implementation that uses modified LAPACK/ScaLAPACK routines.
In our experience, using -DHQR will improve performance on small number of processes but there should be
almost no difference on large number of processes. The reason is that the sequential Householder LAPACK
routine is a BLAS3 implementation and is faster than our in-house BLAS1 implementation of the Modified

8

Gram-Schmidt scheme. However, our parallel MGS implementation is as fast as ScaLAPACK’s Householder
routine. Therefore, there is a difference only in sequential parts of the compression.

3.2 Factorization
After compression, the matrix is factored using ULV factorization, which is essentially an LU factorization
for HSS matrices. This is a black-box procedure, there is no parameter to tune.

3.3 Solution
After factorization, a linear system Ax = b can be solved. This is a black-box procedure, there is no
parameter to tune.

3.4 Iterative refinement
The accuracy of the solution can be improved using iterative refinement. The algorithm is essentially the
following:

err = ||b−Ax||
||b|| ;

steps = 0;
while err >tol_IR and steps <steps_IR do

steps++;
r = b−Ax;
dx = A−1r;
x = x+ dx;
err = ||b−Ax||

||b|| ;
end

The tolerance (i.e., targeted accuracy) is set using tol_IR and the maximum of steps is set using steps_IR.

3.5 Accuracy checking
The quality of the HSS representation Ã of the input matrix A can be checked by computing ||Ã−A||F /||A||F
using the routine check_compress. Ã is not stored as an explicit n×n matrix; the explicit form is computed
using a matrix-matrix product Ã · I with I the identity matrix. Note that this is can be very expensive and
should not be used for very large problems.

An alternative way to check accuracy can be to generate a few random vectors R and compute ||Ã ·R−
A ·R||/||A ·R||. This is illustrated in one of the examples shipped with the code.

3.6 Matrix-vector product
A matrix-vector (or matrix-matrix) product can be computed using the compressed form of the input ma-
trix. This is a black-box procedure, there is no parameter to tune. Note that, when several right-hand
sides are available simultaneously, we recommend using a single product with a block of vectors instead of
multiple products with a single vector. Using a block favors cache reuse and usually improves performance
dramatically.

9

3.7 Partial factorization, Schur complement computation, partial solution
The following partial factorization is useful in many situations:

A =
[
A11 A12
A21 A22

]
=
[
P ∗11L11 0
A21U

−1
11 I

]
·
[
U11 L−1

11 P11A12
0 S

]
(1)

where S is the Schur complement S = A22 −A21A
−1
11 A12.

To solve a linear system Ax = b using this factorization, one has to solve two block triangular systems:
[
P ∗11L11 0
A21U

−1
11 I

]
·
[
y1
y2

]
=
[
b1
b2

]
where

[
b1
b2

]
= b[

U11 L−1
11 P11A12

0 S

]
·
[
x1
x2

]
=
[
y1
y2

]
where

[
x1
x2

]
= x

The solution proceeds in three steps:

1. Reduction phase: (a.k.a condensation){
y1 = L−1

11 P11b1

y2 = b2 −A21U
−1
11 y1

(2)

2. The Schur complement system (reduced system) is solved:

x2 = S−1y2

3. Expansion phase:
x1 = U−1

11
(
y1 − L−1

11 P11A12x2
)

(3)

In this framework, it is the responsibility of the user to solve the Schur complement system. One can use
a direct method (maybe using another instance of STRUMPACK SDP), or an iterative method, using the
Schur complement matrix-vector product provided by STRUMPACK SDP. STRUMPACK SDP can
perform all the other operations using either traditional or HSS-based algorithms:

• Partial factorization.

• Schur complement computation.

• Reduction phase.

• Expansion.

One of the examples shipped with the code illustrates this approach; in the example, the reduced system
is solved using Conjugate Gradient, relying on the (HSS) matrix-vector product provided by STRUMPACK.

4 User Interface
4.1 Matrix format
Whenever a matrix (or vector) is passed to SDP, it must be in 2D block-cyclic form with an accompanying
BLACS descriptor. We refer the reader to [1] for more detail. Users already familiar with ScaLAPACK will
have no problems using the routines in SDP; the signatures are similar to those in ScaLAPACK.

If the matrix in your application is centralized, you can use SDP and get (some) parallelism, but most
routines will work sequentially. This is detailed for each routine in the following subsections. The best way
to use the package is to distribute your matrix in 2D block-cyclic form by using the PxGEMR2D routine from
ScaLAPACK. We provide a snippet of code to do this:

10

/* We initialize a context with only id 0 */
blacs_get_(&IZERO,&IZERO,&ctxtcent);
blacs_gridinit_(&ctxtcent,"R",&IONE,&IONE);

/* We initialize a context with all the processes */
blacs_get_(&IZERO,&IZERO,&ctxtglob);
blacs_gridinit_(&ctxtglob,"R",&IONE,&np);

/* We initialize a 2D grid of processes that will share A */
nprow=floor(sqrt((float)np));
npcol=np/nprow;
blacs_get_(&IZERO,&IZERO,&ctxt);
blacs_gridinit_(&ctxt,"R",&nprow,&npcol);
blacs_gridinfo_(&ctxt,&nprow,&npcol,&myrow,&mycol);

/* The input is generated in Acent on rank 0 */
if(myid==0) {
[...]
descinit_(descAcent,&n,&n,&nb,&nb,&IZERO,&IZERO,&ctxtcent,&n,&ierr);

} else {
descset_(descAcent,&n,&n,&nb,&nb,&IZERO,&IZERO,&INONE,&IONE);

}

/* Distribute A into 2D block-cyclic form */
if(myid<nprow*npcol) {
locr=numroc_(&n,&nb,&myrow,&IZERO,&nprow);
locc=numroc_(&n,&nb,&mycol,&IZERO,&npcol);
dummy=std::max(1,locr);
A=new double[locr*locc];
descinit_(descA,&n,&n,&nb,&nb,&IZERO,&IZERO,&ctxt,&dummy,&ierr);

} else {
descset_(descA,&n,&n,&nb,&nb,&IZERO,&IZERO,&INONE,&IONE);

}
pgemr2d(n,n,Acent,IONE,IONE,descAcent,A,IONE,IONE,descA,ctxtglob);
delete[] Acent;

4.2 StrumpackDensePackage object and initialization
The StrumpackDensePackage class is the only class to be used. It is templated/parametrized by two types:

• The type of scalars (input matrix, vectors, etc.). It can be dcomplex (std::complex<double>, double
precision complex), scomplex (std::complex<float>, single precision complex), float (single precision
real) or double (double precision real).

• The type of reals (for norms, etc.). It can be float (single precision) or double (double precision).

The only constructor for StrumpackDensePackage is

StrumpackDensePackage<T,S>::StrumpackDensePackage(MPI_Comm user_comm)

The only parameter is an MPI communicator. It can be MPI_COMM_WORLD or a subcommunicator created
by the user. We provide an example of usage with a subcommunicator; cf. Section 2.2.

11

4.3 HSS compression
4.3.1 Explicit matrix

void compress(T *A, int *descA);

Input: matrix A in 2D block-cyclic form with a BLACS descriptor descA.

Output: no user-available output. Internally, the StrumpackDensePackage object contains the HSS repre-
sentation of A.

Remarks:

• If A is centralized, most of the work in sequential. The first step in the compression algorithm, and
often the most time-consuming, is to compute a sample of A. This is done by the processes that own
A, thus, if A is centralized, this is done sequentially. The rest of the compression procedure is done in
parallel but the gains will probably be very limited.

• Refer to Section 3.1 to see how to set the parameters associated with the compression routine.

• If HSS is disabled (StrumpackDensePackage::use_HSS false), the routine does not do anything.

• If a matrix has been previously compressed, the routine will abort. Another StrumpackDensePackage
must be used, or the current object must be destroy and re-created.

4.3.2 Explicit matrix, random vectors, and samples

void compress(T* A, int *descA, T **Rr, T **Rc, T** Sr, T** Sc, int *descRS);

Input: matrix A in 2D block-cyclic form with a BLACS descriptor descA; random vectors Rr and Rc, sample
vectors Sr and Sc, with a BLACS descriptor descRS.

Output: no user-available output. Internally, the StrumpackDensePackage object contains the HSS repre-
sentation of A.

Remarks:

• It is the responsibility of the user to ensure that Rr and Rc are random vectors, and that Sr and Sc
define samples of the row and column space of A, i.e., Sr = ARr and Sc = A∗Rc.

• Adaptive sampling is not available in this version. It is the responsibility of the user to
check the maximum rank (max_rank) against the number of random vectors, increase the
sampling size and restart the compression (after reinitializing the SDP object).

4.3.3 Matrix-free version

void compress(T **Rr, T**Rc, T**Sr, T** Sc, int *descRS, void (*foo)(void*,int*,int*,T*,int*));

Input: Random vectors Rr and Rc, sample vectors Sr and Sc, with a BLACS descriptor descRS; function
pointer to an element access routine (see below).

Output: no user-available output. Internally, the StrumpackDensePackage object contains the HSS repre-
sentation of A.

The last argument is a pointer to a routine thatmust be provided by the user. It gives STRUMPACK
access, on the fly, to selected elements of the input problem. Its parameters are the following:

• submat (output) is the scalar array containing the requested elements. It has to be filled by the user.

12

• desc (input) is the BLACS descriptor for submat. Cf. Section 4.1.

• I and J (input) are integer arrays containing the requested indices. The size of I (resp. J) is the number
of rows (resp. columns) of submat and can be found in the descriptor desc. The values (indices) in I
and J are 1-based.

• obj (input) is a handle to a user-given object, that the user passes to the SDP instance before calling
the compression routine (cf. Section 5). This allows users to access their data when they write the
access routine without describing it to STRUMPACK.

It it also the responsibility of the user to indicate whether the element access routine involves interprocess
communications or not. When the element access routine is “global” (involves interprocess communications),
STRUMPACK has to modify its task scheduling in the compression to avoid deadlocks. On the other hand,
when the element access routine is not global, STRUMPACK uses a more efficient scheduling. The parameter
StrumpackDensePackage::access_is_global should be set to true when the element access routine is global.

The following function is a simplistic example of a routine that computes selected elements of a Cauchy
matrix defined by aij = 1

xi−yi
. In this simple example, there is only one MPI process. The vectors x and

y (user data) are accessed using the user object handle, assuming here that obj is an array containing two
pointers. T is the scalar type.

void foo(void *obj, int *I, int *J, T* submat, int *desc) {
int nI, nJ;
int i, j;
T *x, *y;
T **ptr;

nI=desc[2]; // Size of I
nJ=desc[3]; // Size of J

ptr=(T**)obj; // Get user object from the handle
x=ptr[0]; // "
y=ptr[1]; // "

for(i=0;i<nI;i++)
for(j=0;j<nJ;j++)
submat[i+nI*j]=1/(x[I[i]-1]-y[J[j]-1]); // submat(i,j)=A(I[i],J[j])

}

Adaptive sampling is not available in this version. It is the responsibility of the user to check
the maximum rank (max_rank) against the number of random vectors, increase the sampling
size and restart the compression (after reinitializing the SDP object).

4.4 Compression accuracy checking
S check_compression(T *A, int *descA);

Input: matrix A in 2D block-cyclic form with a BLACS descriptor descA.

Output: a real scalar containing ||Ã−A||F
||A||F with Ã the compressed (HSS) representation of A.

Remarks:

• This is very expensive and memory-consuming.

• If A was not previously compressed, the routine exits and reports an error message.

13

4.5 Factorization
void factor(T *A, int *descA);

Input: if HSS is used (use_HSS true), no input is needed; A can be a NULL pointer. Otherwise, matrix A in
2D block-cyclic form with a BLACS descriptor descA

Output: no user-available output. Internally, the StrumpackDensePackage objects contains the factors of A.

Remarks:
• If HSS is used (use_HSS true), this is an ULV factorization. If a matrix has been previously factored
with ULV factorization, the routine will abort. Another StrumpackDensePackage object must be used
to hold another ULV factorization.

• If HSS is disabled (use_HSS true), this is a standard LU factorization performed with ScaLAPACK
(PxGETRF). If the matrix is centralized, this is will performed sequentially. If a matrix has been previously
factored with LU factorization, the routine will abort. Another StrumpackDensePackage object must
be used to LU hold another factorization.

• As explained above, a StrumpackDensePackage cannot hold several ULV factors or several LU factors,
however it can hold one ULV factorization and one LU factorization simultaneously.

4.6 Partial factorization
void partially_factor(T* A, int *descA, int nfact);

Input: if HSS is used (use_HSS true), no input is needed; A can be a NULL pointer. Otherwise, matrix A in
2D block-cyclic form with a BLACS descriptor descA. nfact is the number of variables to eliminated,
i.e., the size of the (1,1) in the partial factorization 1 (Section 3.7). If HSS kernels are used (use_HSS
is true), then nfact must be equal to split_HSS.

Output: no user-available output.Internally, the StrumpackDensePackage objects contains the factors of A.

4.7 Schur complement computation
void compute_schur();

Input: no input. partially_factor must have been previously called.

Output: no user-available output. Internally, the StrumpackDensePackage objects contains a representation
of the Schur complement of A (a traditional Schur complement if use_HSS is false, or a compressed
Schur complement is use_HSS is true.

4.8 Solution
void solve(T *X, int *descX, T *B, int *descB);

Input: X is the solution and B the right-hand side of the system to be solved. X and B can have multiple
columns. They must have the same size and be distributed in 2D block-cyclic form over the same set
of processes, using the same block size.

Output: X is the solution of A ·X = B where A is a matrix previously factored with factor.

Remarks:
• If use_HSS is true, a special HSS triangular solution algorithm is used. The matrix A must have been
factored using ULV factorization, i.e., by calling factor with use_HSS true.

• If use_HSS is false, a traditional triangular solution algorithm is used. The matrix A must have been
factored using LU factorization, i.e., by calling factor with use_HSS false.

14

4.9 Right-hand side reduction
void reduce_RHS(T *X, int *descX, T* B, int *descB);

Input: X is the reduced RHS and B the right-hand side of the system to be solved. X and B can have
multiple columns. They must have the same size and be distributed in 2D block-cyclic form over the
same set of processes, using the same block size.

Output: X is the reduced RHS corresponding to vector y in Equation 2 in Section 3.7.

Remarks:

• If use_HSS is true, a special HSS triangular solution algorithm is used. The matrix A must have been
partially factored using ULV factorization, i.e., by calling partially_factor with use_HSS true.

• If use_HSS is false, a traditional triangular solution algorithm is used. The matrix A must have been
partially factored using LU factorization, i.e., by calling partially_factor with use_HSS false.

4.10 Solution expansion
void expand_solution(T *X, int *descX, T *B, int *descB);

Input: the bottom part of X (last n−nfact must contain the solution of the Schur complement system, x2,
as in Section 3.7. The top part of B (first nfact rows) must contain y1. X and B can have multiple
columns. They must have the same size and be distributed in 2D block-cyclic form over the same set
of processes, using the same block size.

Output: the top part of X (first nfact rows) is filled so that X is the solution of the whole problem.

Remarks:

• If use_HSS is true, a special HSS triangular solution algorithm is used. The matrix A must have been
partially factored using ULV factorization, i.e., by calling partially_factor with use_HSS true.

• If use_HSS is false, a traditional triangular solution algorithm is used. The matrix A must have been
partially factored using LU factorization, i.e., by calling partially_factor with use_HSS false.

4.11 Solution accuracy checking
S check_solution(T *A, int *descA, T *X, int *descX, T *B, int *descB);

Input: A, X and B matrices distributed in 2D block cyclic form over the same set of processes, with the
same block size. A, X, and B have the same row count, X and B have the same column count.

Output: relative residual ||A ·X −B||F /||B||F

Remark: the computation is performed using traditional PBLAS/ScaLAPACK operations.

4.12 Solution iterative refinement
S refine(T *A, int *descA, T *X, int *descX, T *B, int *descB);

Input: A, X and B matrices distributed in 2D block cyclic form over the same set of processes, with the
same block size. A, X, and B have the same row count, X and B have the same column count.

Output: X is the result of the refinement and is (hopefully) a better solution to A ·X = B.

Remark: the algorithm is described in Section 3.4.

15

4.13 Matrix-vector product
void product(char Trans, T alpha, T *A, int *descA, T *B, int *descB,

T beta, T *C, int *descC);

Input: A, B and C matrices distributed in 2D block cyclic form over the same set of processes, with the
same block size. A, B, and C have the same row count, B and C have the same column count.

Output: B contains αA ·B + βB (same as the usual GEMM).

Remarks:

• If use_HSS is true, an HSS matrix-vector product algorithm is used, but the matrix must have been
previously compressed (and input A is actually not used, but descA must be correct).

• If use_HSS is false, a standard product is computed with PBLAS. If A is centralized, the operation is
sequential.

4.14 Schur complement matrix-vector product
void schur_product(char Trans, T alpha, T *X, int *descX, T beta, T *B, int *descB);

Input: X and B matrices of the same size, distributed in 2D block cyclic form over the same set of pro-
cesses, with the same block size. The number of rows of X and B must be n−nfact, after calling
partially_factor(...,nfact) and compute_schur().

Output: B contains αS ·X + βB, where S is the Schur complement as defined in Section 3.7.

4.15 Element extraction
void extract(T *A, int *descA, T *B, int *descB, int *I, int nI, int *J, int nJ);

Input: Matrix A (resp. B in 2D block-cyclic form, described by descA (resp. descB). If use_HSS is true, A
and descA can be NULL (but compress must have been previously called). Integer vectors I (size nI)
and J (size nJ) replicated on all the processes in the communicator. The values in I and J must be
between 1 and n.

Output: B contains A(I, J).

4.16 Schur complement element extraction
void extract_schur(T *B, int *descB, int *I, int nI, int *J, int nJ);

Input: Matrix B in 2D block-cyclic form, described by descB. Integer vectors I (size nI) and J (size nJ)
replicated on all the processes in the communicator. The values in I and J must be between 1
and n−nfact. Functions partially_factor(...,nfact) and compute_schur() must have been called
previously.

Output: B contains S(I, J), where S is the Schur complement as defined in Section 3.7.

4.17 Statistics
void print_statistics();

Input: none

Output: prints various statistics on screen (flops, memory. . .).

16

4.18 C interface
We provide a C interface to SDP. Its usage is very similar to the native C++ interface, the main difference
being that the C++ interface is templated/parametrized. The structures StrumpackDensePackage_C_? (with
?=double for double precision real arithmetic, ?=float for single precision real arithmetic, ?=dcomplex for
complex double precision arithmetic, or ?=scomplex for complex single precision arithmetic) mimic the C++
object StrumpackDensePackage; they have the same fields (e.g., use_HSS, tol_IR. . .). The function names are
prefixed with SDP_C_? (with ?=[double|float|dcomplex|scomplex]) and they have the same signature as the
methods of the StrumpackDensePackage C++ class, except they have an additional argument corresponding
to the structure on which the function has to operate.

Remarks:
• The constructor of the C++ interface is replaced with an initialization routine that must be called
before doing anything with the SDP structure: void SDP_C_?_init.

• In the C++ interface, overloading is used and the compression routine has three different versions with
the same name (compress). In the C interface, these three versions have three different names:

– SDP_C_?_compress_A(&sdp_C, A, descA) (explicit matrix).
– SDP_C_?_compress_ARS(&sdp_C, A, descA, Rr, Rc, Sr, Sc, descRS) (explicit matrix and user given

random vectors and samples).
– SDP_C_?_compress_mtxfree(&sdp_C, Rr, Rc, Sr, Sc, descRS, elements) (matrix-free compression).

• The dcomplex and scomplex types are simply structures with two fields (r real part, i imaginary part).
In the C++ interface, the types std::complex<?> are used.

• Boolean variables in the C++ interface are integers in the C interface (with the usual convention that
nonzero==true).

For example, the following C++ code:
#include "StrumpackDensePackage.hpp"
StrumpackDensePackage<double,double> sdp(MPI_COMM_WORLD);
sdp.use_HSS=true;
sdp.compress(A,descA);

. . . can be called using the C interface with:
#include "StrumpackDensePackage.h"
StrumpackDensePackage_C_double sdp;
SDP_C_init(&sdp,MPI_COMM_WORLD);
sdp.use_HSS=1;
SDP_C_double_compress_A(&sdp,A,descA);

4.19 Fortran interface
We also provide a Fortran interface to SDP; it relies on ISO C bindings to call the functions of the C
interface. Its usage is straightforward. The snippet of C++ code mentioned in the previous section becomes
the following in the Fortran interface:
use StrumpackDensePackage
type(StrumpackDensePackage_F90_double) :: sdp
call SDP_F90_dcomplex_init(sdp,MPI_COMM_WORLD)
sdp%use_HSS=1
call SDP_F90_dcomplex_compress_A(sdp,C_LOC(A),C_LOC(descA))

The only remarkable point is that the Fortran arrays (e.g., the matrix) must be converted to C pointers
using the C_LOC function before being passed to the SDP routines.

17

4.20 Octave/MatlabR© interface
We provide an interface for Octave/Matlab R©. Only real double precision and complex double precision
arithmetics are available. Matrix-free HSS compression is are not available.

Usage is similar to all the other interfaces; the example code becomes the following:

sdp=SDP_mex_double_init();
sdp.use_HSS=1;
SDP_mex_double_compress_A(sdp,A);

Remarks:

• The interface was mostly tested with Octave. Support for Matlab is experimental.

• With Matlab, one might need to run mpiInit before running SDP.

• The interface works in parallel; e.g., one can run mpirun -np 4 octave mex_example.m.

• The interface assumes that all the objects (matrices, vectors, scalars. . .) are duplicated. E.g., when
one writes x=ones(5,1) in an .m script and runs Octave with mpirun, the x object is replicated on all
the processes (every process owns a 5 × 1 array), and the interface relies on this assumption. The
interface internally builds 2D block-cyclic versions of the input objects so that they can be passed to
SDP. Output arrays are also duplicated.

5 Parameters
5.1 General parameters

use_HSS: true to use HSS algorithms, false to use standard PBLAS/ScaLAPACK algorithms. Default:
true.

verbose: if false, the routines do not print anything on screen; otherwise, they print some information.
Default: true.

5.2 HSS compression
Most important parameters (described in Section 3.1):

tol_HSS: tolerance used for the HSS compression routine.

min_rand_HSS: starting number of random vectors for sampling.

max_rand_HSS: maximum number of random vectors for sampling.

split_HSS: for use with a partial factorization. It must be set prior to the compression, and must be
equal to the nfact parameter of the partially_factor routine.

obj: for matrix-free compression only; corresponds to the obj parameter in the element access routine
provided by the user. Cf. Section 4.3.3 and the matrixfree.cpp example shipped with the code.

access_is_global: for matrix-free compression only. Must be set to true when the user-given element
access routine involves interprocess communication. Can be set to false otherwise. True by default.

sched_strat: for compression with an explicit matrix. Values: 1 or 2. Default: 1; 2 is an alternative
scheduling strategy that can pay off in some situations for problems that are very compressible.

Secondary (default parameters should be fine in most case):

18

lim_rand_HSS: restarting criterion. If d is the current number of random vectors used for sampling
and the rank computed at a step of the compression stage is larger than d-lim_rand_HSS, more random
vectors are added and the compression restarts.

inc_rand_HSS number of random vectors to be added when the compression restarts.

levels_HSS: number of levels in the HSS tree.

block_HSS: size of the index set associated with each leaf of the HSS tree. It is another way of defining
the number of levels in the tree (levels_HSS=log2(n/block_HSS+1); levels_HSS has higher priority.

5.3 Iterative refinement
tol_IR: stopping criterion for iterative refinement (cf. Section 3.4).

steps_IR: number of steps of iterative refinement.

fast_IR: if true, approximate HSS matrix-vector products are used instead of exact matrix-vector
products during the iterative refinement. This is usually not numerically stable and is disabled by
default.

6 Acknowledgements
We wish to thank our collaborator Artem Napov (Université Libre de Bruxelles) for his insight on the
algorithmic aspects.

We wish to thank people who sent us test problems and helped testing the code:

• Guillaume Sylvand (Airbus).

• Ana Manic (Colorado State University).

• Jeremiah Jones (Arizona State University).

• Umberto Villa (Lawrence Livermore National Laboratory).

7 Copyright notice

STRUMPACK -- STRUctured Matrices PACKage, Copyright (c) 2014, The Regents of the University of
California, through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software, please contact
Berkeley Lab’s Technology Transfer Department at TTD@lbl.gov.

NOTICE. This software is owned by the U.S. Department of Energy. As such, the U.S. Government
has been granted for itself and others acting on its behalf a paid-up, nonexclusive,
irrevocable, worldwide license in the Software to reproduce, prepare derivative works, and
perform publicly and display publicly. Beginning five (5) years after the date permission to
assert copyright is obtained from the U.S. Department of Energy, and subject to any subsequent
five (5) year renewals, the U.S. Government is granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce,
prepare derivative works, distribute copies to the public, perform publicly and display
publicly, and to permit others to do so.

19

8 License agreement

"STRUMPACK -- STRUctured Matrices PACKage, Copyright (c) 2014, The Regents of the University of
California, through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from the U.S. Dept. of Energy). All rights reserved."

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National Laboratory,
U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the
features, functionality or performance of the source code ("Enhancements") to anyone; however,
if you choose to make your Enhancements available either publicly, or directly to Lawrence
Berkeley National Laboratory, without imposing a separate written license agreement for such
Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other
computer software, distribute, and sublicense such enhancements or derivative works thereof, in
binary and source code form.

References
[1] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon, J. J. Don-

garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley,
ScaLAPACK users’ guide, vol. 4, SIAM, 1997.

[2] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, A distributed-memory package for dense hier-
archically semi-separable matrix computations using randomization, Submitted to ACM Transactions on
Mathematical Software, (2014).

20

	Introduction
	STRUMPACK
	Distributed-Memory Dense Package
	Version history

	Installation
	Requirements
	Running the examples
	Using STRUMPACK Dense Package within your code.
	Compilation flags

	Algorithms
	HSS Compression
	Idea
	Variants
	Parameters

	Factorization
	Solution
	Iterative refinement
	Accuracy checking
	Matrix-vector product
	Partial factorization, Schur complement computation, partial solution

	User Interface
	Matrix format
	StrumpackDensePackage object and initialization
	HSS compression
	Explicit matrix
	Explicit matrix, random vectors, and samples
	Matrix-free version

	Compression accuracy checking
	Factorization
	Partial factorization
	Schur complement computation
	Solution
	Right-hand side reduction
	Solution expansion
	Solution accuracy checking
	Solution iterative refinement
	Matrix-vector product
	Schur complement matrix-vector product
	Element extraction
	Schur complement element extraction
	Statistics
	C interface
	Fortran interface
	Octave/Matlab® interface

	Parameters
	General parameters
	HSS compression
	Iterative refinement

	Acknowledgements
	Copyright notice
	License agreement

