<div dir="ltr">I have just read that there is no special algorithm for Hermitian matrices in MUMPS (sorry, I meant Hermitian, not symmetric... the matrix is complex).<div><br></div><div>Sorry for this. In any case, if there is any suggestion it is more than welcome!</div><div><br></div><div>Thanks for your help and your work,</div><div><br></div><div>Gianluca</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Nov 4, 2015 at 3:37 PM, Gianluca Meneghello <span dir="ltr"><<a href="mailto:gianmail@gmail.com" target="_blank">gianmail@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">It is a discretization of the differential operator, of which I would need the inverse (or LU decomposition). My goal is frequency response (resolvant) analysis of the linearized Navier-Stokes operator. <div><br></div><div>There was a reason I was not using <font color="#500050">MatTransposeMatMult, that is the matrix is complex and I would need MatTransposeHemitianMatMult (or something like that). It seems to me that is not available (or does MatTransposeMatMult compute the Hermitian transpose?)</font></div><div><font color="#500050"><br></font></div><div><font color="#500050">Any suggestion is of course welcome!</font></div><div><font color="#500050"><br></font></div><div><font color="#500050">Thanks</font></div><span class="HOEnZb"><font color="#888888"><div><font color="#500050"><br></font></div><div><font color="#500050">Gianluca</font></div><div><font color="#500050"><br></font></div><div><font color="#500050"><br></font></div><div><font color="#500050"><br></font></div><div><font color="#500050"><br></font></div></font></span></div><div class="HOEnZb"><div class="h5"><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Nov 4, 2015 at 1:16 PM, Jed Brown <span dir="ltr"><<a href="mailto:jed@jedbrown.org" target="_blank">jed@jedbrown.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span>Gianluca Meneghello <<a href="mailto:gianmail@gmail.com" target="_blank">gianmail@gmail.com</a>> writes:<br>
<br>
> That is correct... I will try with -pc_type cholesky and use<br>
> MatTransposeMatMult.<br>
><br>
> Using cholesky I do not need to specify mumps as a solver, am I right?<br>
<br>
</span>Of course you do.<br>
<span><br>
> A is a linearization of the Navier Stokes equation.<br>
<br>
</span>Of the differential operator, its inverse, or a map from some parameters<br>
to observations?<br>
</blockquote></div><br></div>
</div></div></blockquote></div><br></div>