<div dir="ltr">Coming in late to this thread but you are doing frequency domain NV.<div><br></div><div>Start by getting your time domain (definite, no omega shift) solves working. This can be a challenge for NV. There are techiques for this but we do not have them. Start with plane aggregation (-pc_gamg_nsmooths 0), this should be able to work OK, then try smoothing, this will probably not work.</div><div><br></div><div>Now add the shift. If you are shifting to high frequency then there is no hope w/o very special methods so use a direct solver.</div><div><br></div><div>Mark</div><div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Jul 22, 2015 at 5:29 PM, Jed Brown <span dir="ltr"><<a href="mailto:jed@jedbrown.org" target="_blank">jed@jedbrown.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span class="">"<a href="mailto:Mahir.Ulker-Kaustell@tyrens.se">Mahir.Ulker-Kaustell@tyrens.se</a>" <<a href="mailto:Mahir.Ulker-Kaustell@tyrens.se">Mahir.Ulker-Kaustell@tyrens.se</a>> writes:<br>
> I am solving Ax = b with a sparse, indefinite, symmetric, complex<br>
> matrix, can anything be said about the chances of success in using an<br>
> iterative method?<br>
<br>
</span>Not without more information/experimentation. You should check the<br>
literature for your problem domain to see what people claim is<br>
successful or does not work.<br>
</blockquote></div><br></div>