<div dir="ltr"><div class="gmail_extra"><div class="gmail_quote">On Mon, Jul 6, 2015 at 7:43 PM, Gideon Simpson <span dir="ltr"><<a href="mailto:gideon.simpson@gmail.com" target="_blank">gideon.simpson@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word">I have a nonlinear eigenvalue problem for a system of equations, of the form, <div><br></div><div>-Delta u + f(u) = E * u,</div><div><br></div><div>where E is my nonlinear eigenvalue parameter, and u and f are vector valued. </div><div><br></div><div>I thus have the following two things to contend with:</div><div><br></div><div>1. E is a scalar which needs to be distributed across all the processes when the right hand side is formed</div><div><br></div><div>2. I would like to be able to use a da to manage the spatial and multicomponent nature of u</div><div><br></div><div>Obviously the Vec that my nonlinear solver is going to search for has to store both bits of data. Is there a clever petsc way to handle this, or will I need to do all the indexing and broadcasting by hand?</div></div></blockquote><div><br></div><div>My first suggestion would be to investigate SLEPc, which does have some support for nonlinear</div><div>eigenvalue problems. Failing that, E normally comes out of the algorithm as the result of some</div><div>vector algebra which automatically distributes the constant (like VecDot).</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word"><span class="HOEnZb"><font color="#888888"><div><div>
<span style="border-collapse:separate;color:rgb(0,0,0);font-family:Helvetica;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:-webkit-auto;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">-gideon</span>
</div>
<br></div></font></span></div></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature">What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div>
</div></div>