<html><head><meta http-equiv="Content-Type" content="text/html charset=us-ascii"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class="">I have a nonlinear eigenvalue problem for a system of equations, of the form, <div class=""><br class=""></div><div class="">-Delta u + f(u) = E * u,</div><div class=""><br class=""></div><div class="">where E is my nonlinear eigenvalue parameter, and u and f are vector valued. </div><div class=""><br class=""></div><div class="">I thus have the following two things to contend with:</div><div class=""><br class=""></div><div class="">1. E is a scalar which needs to be distributed across all the processes when the right hand side is formed</div><div class=""><br class=""></div><div class="">2. I would like to be able to use a da to manage the spatial and multicomponent nature of u</div><div class=""><br class=""></div><div class="">Obviously the Vec that my nonlinear solver is going to search for has to store both bits of data. Is there a clever petsc way to handle this, or will I need to do all the indexing and broadcasting by hand?</div><div class=""><br class=""><div class="">
<span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: Helvetica; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; ">-gideon</span>
</div>
<br class=""></div></body></html>