<div dir="ltr">If I recall correctly, GAMG has a somewhat high setup cost and this is a solver I'll only be using for one single solve. It's not a physical field, it's just a marker; 1 inside, 0 outside a surface described by a CAD file. This marker is being propagated into the volume of an octree volumetric grid. I'm just taking advantage of the fact that the solution of the Laplace equation with constant BC's is the constant. <br></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Mar 31, 2015 at 3:22 PM, Jed Brown <span dir="ltr"><<a href="mailto:jed@jedbrown.org" target="_blank">jed@jedbrown.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span class="">John Mousel <<a href="mailto:john.mousel@gmail.com">john.mousel@gmail.com</a>> writes:<br>
<br>
> I'm trying to mark two distinct regions of a domain by solving the Laplace<br>
> equation with constant Dirichlet BC's. Because I'm just rounding to the<br>
> nearest integer, I just need cheap AMG like behavior to move the constant<br>
> across the domain quickly.<br>
<br>
</span>What is the physical propagation mechanism?  Is there a concept of<br>
conservation that should be satisfied?  What's wrong with a normal AMG<br>
configuration for the Laplacian?<br>
</blockquote></div><br></div>