<div dir="ltr"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><span style="font-size:12.8000001907349px">Absolutely. Also, with Krylov-Schur you can adjust the restart parameter (which is hidden in ARPACK); it may help improve convergence in some cases.</span></blockquote><div><br></div><div>Awesome. I'll just use Krylov-Schur then. Thanks. </div></div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Mar 25, 2015 at 5:18 PM, Jose E. Roman <span dir="ltr"><<a href="mailto:jroman@dsic.upv.es" target="_blank">jroman@dsic.upv.es</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><br>
El 25/03/2015, a las 22:06, Harshad Sahasrabudhe escribió:<br>
<span class=""><br>
><br>
> I thought ARPACK was faster when the system size is large and number of eigenvalues required is small. I will be working with sparse matrices of size ~60,000. Does SLEPC's Krylov-Schur have about the same performance as ARPACK for calculating ~50 eigenvalues for such matrices?<br>
><br>
<br>
</span>Absolutely. Also, with Krylov-Schur you can adjust the restart parameter (which is hidden in ARPACK); it may help improve convergence in some cases.<br>
<a href="http://slepc.upv.es/documentation/current/docs/manualpages/EPS/EPSKrylovSchurSetRestart.html" target="_blank">http://slepc.upv.es/documentation/current/docs/manualpages/EPS/EPSKrylovSchurSetRestart.html</a><br>
<span class="HOEnZb"><font color="#888888"><br>
Jose<br>
<br>
</font></span></blockquote></div><br></div>