<div dir="ltr"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">With MUMPS you should not get spurious eigenvalues.</blockquote><div>I get only a few spurious eigenvalues when using MUMPS with ARPACK, but the eigenvectors are definitely wrong.<br></div><div><br></div><div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">Did you try the krylovschur solver?</blockquote><div>Yes, Krylov-Schur gives me correct results.<br></div><div><br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">How do you know the eigenvalues are wrong?</blockquote><div>I'm testing my implementation of Schrodinger equation solver with a 3D harmonic oscillator potential. I'm getting correct results using FEAST and krylovschur solvers.<br></div><div><br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">Are you setting problem type to GHEP?</blockquote><div>Yes <br></div><div><br></div><div><br></div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Mar 25, 2015 at 4:37 PM, Jose E. Roman <span dir="ltr"><<a href="mailto:jroman@dsic.upv.es" target="_blank">jroman@dsic.upv.es</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><br>
El 25/03/2015, a las 21:29, Harshad Sahasrabudhe escribió:<br>
<div><div class="h5"><br>
> Hi,<br>
><br>
> I'm trying to use the ARPACK interface in SLEPc for calculating smallest eigenvalues with eigenvectors of a generalized eigenproblem. The matrices are symmetric.<br>
><br>
> What are the suggested linear solvers/preconditioners for this type of a system when using ARPACK? I am using shift and invert with a shift of 0.<br>
><br>
> I get a lot of spurious eigenvalues when I use GMRES linear solver or MUMPS for LU factorization. Chebyshev doesn't seem to converge (I don't have a good guess for the higher end of eigenvalues).<br>
><br>
> Thanks,<br>
> Harshad<br>
<br>
</div></div>With MUMPS you should not get spurious eigenvalues. Did you try the krylovschur solver? How do you know the eigenvalues are wrong? Are you setting problem type to GHEP?<br>
<span class=""><font color="#888888"><br>
Jose<br>
<br>
</font></span></blockquote></div><br></div></div></div>