<div dir="ltr"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><span style="font-size:12.8000001907349px">Anyway, why do you insist in using ARPACK when SLEPc's Krylov-Schur work? ARPACK will not give you any further advantage.</span></blockquote><div><br></div><div>I thought ARPACK was faster when the system size is large and number of eigenvalues required is small. I will be working with sparse matrices of size ~60,000. Does SLEPC's Krylov-Schur have about the same performance as ARPACK for calculating ~50 eigenvalues for such matrices?<br></div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Mar 25, 2015 at 5:00 PM, Jose E. Roman <span dir="ltr"><<a href="mailto:jroman@dsic.upv.es" target="_blank">jroman@dsic.upv.es</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><br>
El 25/03/2015, a las 21:47, Harshad Sahasrabudhe escribió:<br>
<span><br>
> With MUMPS you should not get spurious eigenvalues.<br>
> I get only a few spurious eigenvalues when using MUMPS with ARPACK, but the eigenvectors are definitely wrong.<br>
><br>
> Did you try the krylovschur solver?<br>
> Yes, Krylov-Schur gives me correct results.<br>
><br>
> How do you know the eigenvalues are wrong?<br>
> I'm testing my implementation of Schrodinger equation solver with a 3D harmonic oscillator potential. I'm getting correct results using FEAST and krylovschur solvers.<br>
><br>
> Are you setting problem type to GHEP?<br>
> Yes<br>
><br>
<br>
</span>Did you try the arpack-ng version? Seems that some people have taken over maintainance.<br>
<br>
Anyway, why do you insist in using ARPACK when SLEPc's Krylov-Schur work? ARPACK will not give you any further advantage.<br>
<span><font color="#888888"><br>
Jose<br>
<br>
</font></span></blockquote></div><br></div></div>