<div dir="ltr">Shri: Thanks for pointing out that I need IDA instead of CVODE from sundials, which isn't currently supported by PETSc. Are there any near term plans for supporting IDA via PETSc?<br><div class="gmail_extra"><br></div><div class="gmail_extra">Barry: I now realize that PSEUDO is applicable for steady-state problems. For the time being I will stick with BEULER and ROSW methods and look into PCFIELDSPLIT.</div><div class="gmail_extra"><br></div><div class="gmail_extra">-Gautam.<br></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Nov 4, 2014 at 8:19 AM, Barry Smith <span dir="ltr"><<a href="mailto:bsmith@mcs.anl.gov" target="_blank">bsmith@mcs.anl.gov</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><br>
Note: PSEUDO is a continuation method for solving a nonlinear system, it doesn’t make sense to use it to replace other methods.<br>
<br>
That time step of 1 seems very large for SUNDIALs to be using<br>
<span class="HOEnZb"><font color="#888888"><br>
Barry<br>
</font></span><div class="HOEnZb"><div class="h5"><br>
> On Nov 4, 2014, at 9:40 AM, Abhyankar, Shrirang G. <<a href="mailto:abhyshr@mcs.anl.gov">abhyshr@mcs.anl.gov</a>> wrote:<br>
><br>
> PETSc only supports the ODE solver (CVODE) from Sundials.<br>
><br>
> Shri<br>
><br>
> From: Gautam Bisht <<a href="mailto:gbisht@lbl.gov">gbisht@lbl.gov</a>><br>
> Date: Mon, 3 Nov 2014 22:56:58 -0800<br>
> To: <<a href="mailto:petsc-users@mcs.anl.gov">petsc-users@mcs.anl.gov</a>><br>
> Subject: [petsc-users] sundials results do not agree with beuler/rosw/pseudo<br>
><br>
> Hi,<br>
><br>
> I'm solving subsurface flow equation in which the governing ODE is reformulated as a system of DAE. I'm using PETSc TS+DMComposite to solve the system with a LU preconditioner. I get comparable results for BEULER, ROSW and PSEUDO ts_type. But results with SUNDIALS for even a single TS step are significantly underestimated when compared to those obtained for the other ts_types. I would appreciate if folks would suggest ideas on how can I go about figuring out what is going wrong with SUNDIALS.<br>
><br>
> I'm using following PETSc options:<br>
><br>
> >/opt/local/bin/mpiexec -n 1 $EXEROOT/cesm.exe \<br>
> -ts_monitor \<br>
> -ts_view \<br>
> -snes_monitor \<br>
> -pc_type lu \<br>
> -ts_type sundials -ts_sundials_monitor_steps \<br>
> -ts_dt 1.0 -ts_final_time 1.0<br>
><br>
> 0 TS dt 1 time 0<br>
> 1 TS dt 1 time 1<br>
> TS Object: 1 MPI processes<br>
> type: sundials<br>
> maximum steps=100000<br>
> maximum time=1<br>
> total number of nonlinear solver iterations=0<br>
> total number of nonlinear solve failures=0<br>
> total number of linear solver iterations=0<br>
> total number of rejected steps=0<br>
> Sundials integrater does not use SNES!<br>
> Sundials integrater type BDF: backward differentiation formula<br>
> Sundials abs tol 1e-06 rel tol 1e-06<br>
> Sundials linear solver tolerance factor 0.05<br>
> Sundials max dimension of Krylov subspace 5<br>
> Sundials using unmodified (classical) Gram-Schmidt for orthogonalization in GMRES<br>
> Sundials suggested factor for tolerance scaling 1<br>
> Sundials cumulative number of internal steps 1<br>
> Sundials no. of calls to rhs function 2<br>
> Sundials no. of calls to linear solver setup function 1<br>
> Sundials no. of error test failures 0<br>
> Sundials no. of nonlinear solver iterations 1<br>
> Sundials no. of nonlinear convergence failure 0<br>
> Sundials no. of linear iterations 0<br>
> Sundials no. of linear convergence failures 0<br>
> PC Object: 1 MPI processes<br>
> type: lu<br>
> PC has not been set up so information may be incomplete<br>
> LU: out-of-place factorization<br>
> tolerance for zero pivot 2.22045e-14<br>
> matrix ordering: nd<br>
> linear system matrix = precond matrix:<br>
> Mat Object: 1 MPI processes<br>
> type: seqaij<br>
> rows=200, cols=200<br>
> total: nonzeros=598, allocated nonzeros=3200<br>
> total number of mallocs used during MatSetValues calls =200<br>
> not using I-node routines<br>
> Sundials no. of preconditioner evaluations 1<br>
> Sundials no. of preconditioner solves 0<br>
> Sundials no. of Jacobian-vector product evaluations 0<br>
> Sundials no. of rhs calls for finite diff. Jacobian-vector evals 0<br>
><br>
> Thanks,<br>
> -Gautam.<br>
><br>
<br>
</div></div></blockquote></div><br></div></div>