<div dir="ltr"><br><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Oct 27, 2014 at 3:02 PM, Filippo Leonardi <span dir="ltr"><<a href="mailto:filippo.leonardi@sam.math.ethz.ch" target="_blank">filippo.leonardi@sam.math.ethz.ch</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span class="">On Monday 27 October 2014 14:31:45 Mark Adams wrote:<br>
><br>
> I'm not sure what you are asking. starting i=0 or i=1, and with and<br>
> without mg. So four possibilities? The solutions will be different for<br>
> i=0 or 1 in this code:<br>
><br>
<br>
</span>Yes, 4 cases:<br>
i = 0, MG: wrong solution *(for *any* solution, even afterwards, i.e. i >= 0)*<br>
(and error, if debug)<br></blockquote><div><br></div><div>OK, so the first time there is no RHS and so not eigen estimate and the next solves do not check to see if a valid eigen estimate has been created.</div><div><br></div><div>Jed: could we just check for zero iterations in the eigen estimator and then call the random thing. Or something along those lines.</div><div><br></div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
i = 1, MG: ok<br>
i = 0, CG: (or anything): ok<br>
i = 1, CG (or anything): ok<br>
<br>
> -ksp_chebyshev_estimate_eigenvalues_random<br>
<br>
Can try this but the problem, to me, seems deeper (because inherited from each<br>
solve afterwards).</blockquote></div><br></div></div>