<div dir="ltr">Matt,<div><br></div><div>Thank you very much! </div><div><br></div><div>The ex19 used the Gauss-Seidel method. But I'm a little bit wonder whether we have any examples of Jacobi method to solve such linear systems <span style="color:rgb(80,0,80);font-family:arial,sans-serif;font-size:16.3636360168457px">"(mat)A dot (vec)X = (vec)B"</span> with dof>1? Thanks in advance!</div><div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Sep 30, 2014 at 10:15 PM, Matthew Knepley <span dir="ltr"><<a href="mailto:knepley@gmail.com" target="_blank">knepley@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_extra"><div class="gmail_quote"><span class="">On Tue, Sep 30, 2014 at 9:13 PM, Sharp Stone <span dir="ltr"><<a href="mailto:thronesf@gmail.com" target="_blank">thronesf@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div>Hi all,<br><br></div>I have four differential equations to be solved with a linear sparse matrix system that has the form of "(mat)A dot (vec)X = (vec)B". For each node, I have dof=4. I found few tutorials or examples on the KSPSolve with dof>1, and I do know it's possible to solve this problem with Petsc. Are there any sources illustrating ksp solver with dof>1? Many thanks!<br></div></blockquote><div><br></div></span><div>Yes, try SNES ex19.</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><span class=""><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Sorry for the stupid questions.<span><font color="#888888"><br clear="all"><div><div><br>-- <br><div dir="ltr"><div>Best regards,</div><div><br></div></div>
</div></div></font></span></div>
</blockquote></span></div><span class="HOEnZb"><font color="#888888"><br><br clear="all"><div><br></div>-- <br>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener
</font></span></div></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div dir="ltr"><div>Best regards,</div><div><br></div>Feng</div>
</div>