My model is a bead packing. I simulate each bead contact with a spring. This is what the spring network looks like overlapped with the beads packing.

Figure 1: Discrete Element Model for the bead packing
Equilibrium equations, each node has two degrees of freedom.

$$
\begin{equation*}
\boldsymbol{R}^{(n)}\left(\boldsymbol{u}^{(n)}\right)=\mathbf{M} \ddot{\boldsymbol{u}}^{(n)}+\boldsymbol{K} \boldsymbol{u}^{(n)}-\boldsymbol{F}_{e x t}^{(n)}=0 \tag{1}
\end{equation*}
$$

The scalar force in each spring is just

$$
\begin{equation*}
F_{\text {spring }}=k_{s p} \delta \tag{2}
\end{equation*}
$$

where $k_{s p}$ is the spring coefficient and δ is the relative displacements between the nodes.

Each spring contributes with the following internal force vector:

$$
\begin{equation*}
\boldsymbol{F}_{\text {spring }}=k_{s p} \delta \cdot(\boldsymbol{t},-\boldsymbol{t}) \tag{3}
\end{equation*}
$$

The vector \boldsymbol{t} is the unit vector that connects the springs' nodes.

$$
\begin{equation*}
t=\frac{\left(\boldsymbol{X}_{\boldsymbol{i}}-\boldsymbol{X}_{\boldsymbol{j}}\right)}{\left|\boldsymbol{X}_{\boldsymbol{i}}-\boldsymbol{X}_{\boldsymbol{j}}\right|} \tag{4}
\end{equation*}
$$

Each spring contributes with the following constitutive matrix (assuming small deformations):

$$
\begin{equation*}
\boldsymbol{K}_{\text {spring }}=k_{s p} \delta \cdot(\boldsymbol{t},-\boldsymbol{t}) \otimes(\boldsymbol{t},-\boldsymbol{t}) \tag{5}
\end{equation*}
$$

The mass matrix is just a diagonal matrix, one entry per degree of freedom.

